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1. Nonholonomic constraint systems
1.1 The mechanical model

1.2 Class of constrained mechanical
systems

Suppose the �-dimensional �� -manifold � is the ���������	��

��	���
 of a mechanical system. A smooth curve � �� ���� �
� satisfies �	���� �������	��� if there is a 
	���	���	��� on
�, i.e. a subbundle of the tangent bundle �� such that ����� �
������� for all � � �. If this distribution is nonintegrable, the
constraints are called ���������
	�. Consider the smooth ���

�����	��� � �� ���Then the �������	��
 ���	��	����

��	��	��� is given by
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2. Embedding techniques
2.1 Strong differential observability
Given

�� � ���
 ��
 � � ���� �����

on the�-dimensional analytical compact manifold �,� ��� � �

�
	� is a smooth control, � � � ��	� a smooth output. Let

� � �. Define the map ��
�
� � � � � �������	� �
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where ���� is the solution of (2.1) with ���� � ��� Consider the
�������	�� of ��
�
� as the map
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System (2.1) is called �������� 
	������	���� ���������� ��

��
��� if ���
�
� is an embedding.

��������� 	�
�� (1996): ���
�
� is for� 	 � �	
���

generically (in a precise sense) an embedding if 	� � 	� and � is
a compact analytic manifold.

3. Output stabilization
3.1 The inverse Lyapunov theorem
Given (2.1) with the stationary set �. Can we find a control � which

����
� ���� �� ��� 
������
���� and ��	�� ����	�

�	����?

Convergence to a Pointwise convergence Convergence to the
single equilibrium to the stationary set stationary set
��������� 	�
�� (1994)

���������� 	�
�: For ���� � ����� the set � is
asymptotically stable.

��
���� �������
�� ������� (��
��� (1969)):

Suppose � � 
� � ������� � �� is the domain of attraction.
Then there exists a �� function � � � ��such that

�� � ��� � �
 
� � � 
 � ��� � �
 
� � ����

�� ��� ��� � � in ���� �� � ��� �� as � � 
�.

����: Use such a Lyapunov function in order to construct a
stabilizing feedback for the autonomous system (2.1)

3.2 Center manifold theorem
Let � be an open set in��
 � a �� vector field on � , and

� � � a stationary point of � . Denote by 
�����������
�� the

local flow of � on ���
 �� � �
� a neighborhood of �.

Let �� � ���
� � ���

�
 � � ���
 ��, be the tangent map-

ping of 
��� at �.

(we use Einstein’s summation convention) for all variations Æ� such that
Æ� � ���� at each point � of the curve � �� ����.
Let 
��� be a set of � independent �-forms whose vanishing de-
scribes the nonholonomic constraints. Choose a chart and a basis for
the constraints such that
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where � � ��
  � � ���� ���� We define the constrained
�������	���# by substituting the constraints
� � � �!�

" �� "
 � � �
 �
 � � � 
 �
 into the Lagrangian:
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Then the equation of motion for the mechanical system with linear con-
straints can be written as
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1.3 The pneumatic tire as nonholonomic
system

The equation of motion is given by the Lagrange d’Alembert equation
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where � � � ��' 
 ��' 
 �� is the kinetic energy,

�' � �' ��
�
 ���
 ��
 ' � �
 �
 � � � 
 �
 are the generalized

2.2 Equilibrium points and observability

���� (1995): Let �
 �
 � be analytic, ���� � �
 (2.1) strongly
differentially observable and � be the set of equilibria. Then
�	
� � 	� � ��

���������� ��
 Let in (2.1) � be an analytic vector field on
the compact analytic manifold � with the stationary set � satisfying

	� � 

�
�	
� � �
 	�� � �����

Then the set of analytic functions � � � � �	� such that (2.1) is
strongly differentially observable of order � 	 � �	
��� contains

a residual set of the analytical functions � � � ��	�.

2.3 Observability and transversality
The observability property is expressed in terms of the ���������

���	�� of a particular mapping. Let �
) be smooth manifolds, *
be a submanifold in ) and + � � � ) be a smooth map.
The map + ������������� 	��������� * at � � � if either
� � +��� ,� * or, if � � * 
 then
Image �	�+� � ���*� � ���)��

��������: +���*

+���* + does not intersect * transversally at �

���������� 	���: �� � ) � - is a 	� -invariant
decomposition, such that 	��) has only imaginary eigenvalues, and

	��- has no purely imaginary eigenvalues.

������ �������� ������� (���� (1981))
For any � � �� 
�� there exists an open neighborhood � of �, a
�� closed submanifold * of � such that:

���� � * and ��* � ) , and ���� for any � � *, the maximal
orbit of � in � passing through � at time � is contained in *.
����� For any � � � such that the maximal positive (resp. negative)
semiorbit of � in � starting (resp. ending) for � � � at �, is defined
for all � 	 � (resp. � � ��, then the set �� ��� (resp. "� ���� is
contained in *.

 !����� ��� �. � .�
 �/ � �/

Center manifold

3.3 Generically asymptotic observer
���������� 	���: System (2.1) is strongly differentially
observable of order �. Define the �	�����	� 
���	�

0� �� �	
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 � � � 
���
� � � parameter,
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forces, (' � (' �3
 �
 4� are the generalized reaction forces of

the constraints ��������
 �	�� ��� �����	� 
����
��	�� of
the tire. The linear constraints are given by the rolling property of the tire

�. � �3 � 56 � 5� � � 
 �6 � �� � "53 � &5� � 754 � � 

�����

where "
 & and 7 are constants. These constraints are nonholonomic

because the �-forms �� �� 	. � 	3 � 5�6 � ��	�


�� �� 	6 � 	� � 5��"3 � &� � 7.�	� are not integrable.
Substitution of (1.5) into (1.4) gives a general nonautonomous system

�� � ���
 ����� �����

with � � �
���� � � � �	� as perturbation or control. As
a typical property of (1.6) the set of ���	�	��	� for ���� � � is a
continuum and all they are unstable. Possibility of unstable oscillations.

 !����� 
�

Bicycle (�������� ������ (1972);����� ������� (1995))

�4� 84� ! �9 � %9 � � 


8
 !
 %
 : � parameters 
�9 � : �9 � �4 � � 


4 - angle between bicycle plane and the vertical,
9 - angle of rotation of the steering wheel.

Stationary set: � � 
�4
 9� � �� � 84 � %9 � �� 
 � is a
continuum with �	
� � ��

Routh-Hurwitz: � is stable if : � %
!

and :8 � %�

Symmetries: The rigid frame of the bicycle is assumed to be symmetric
about the plane containing the rear wheel.

Controlled bicycle: �4� 84� ! �� � %� � �

control � � "4 � & �4 � 7
� �
� 4	: 


"
 &
 7 parameters.

Transversality is a generic property (open and dense).

Analytic (subanalytic) sets are locally defined by a finite number of equa-
tions (equations and inequalities) given by analytic functions.

Whitney stratification: Decomposition of a set ! into a finite union of
manifolds !� given by algebraic equations or inequalities.
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where !��!�� is the positive (negative) part of the .� -axis,
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Bad sets (no transversality) are vector bundles with analytic (subana-
lytic) subsets of a vector space as a typical fibre.
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the ������ �������� 	� ��� ���������� ���
 ��� �����

���	
��	��

�; � �!�
��
�0���
	�

�; �����

�0����� � $�
	�
���;
 �
 "��;
 ����

���������� ��
 Suppose that the assumptions � ��,
� �� are satisfied. Then system (3.1), (3.2) gives an asymptotic
stabilization of the stationary set �, i.e. dist �����
 �� � � as
� ���

��������� ��
 If � � � �	
� � � and
	� � 

�
�	
� � �
 	�� then system (3.1), (3.2) is gene-
rically strongly differentially observable of order � and the stationary
set � is generically asymptotically stabilizable by (3.1), (3.2).

"������ ����: � � 
��� �!�
� (1985),���������
	�
�� (1994).

#����$ ��
 Modifications of the observer (3.2).

�� High-gain extended ���
�� �����, where 0� is ���
��������;

"� High-gain observer where the observations are ��
���
;

#� Observer for ��	�� ����� and ����
��� ���	
��	��.

��We avoid the use of derivatives of the measurements


