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1.Thermovisco-elastoplastic contact
1.1 The mechanical model

measurements rigid moving cylinder

�� �� -free and moving boundary

�� thermovisco-elastoplastic
�� material

��

1.2 Notation

Suppose � � �� is a domain (reference configuration of the visco-
elastoplastic body), � � �� is the piecewise Lipschitz continuous
boundary divided in the three disjunct parts �� (where the body is
clamped), �� (where the tractions act) and �� (where the visco-
elastoplastic body comes in frictional contact with a rigid moving body).

2. Coupled variational systems

2.1 Scales of Hilbert spaces

A collection of real Hilbert spaces�������with norm ���� and
scalar product ��	 ��� is called ����� of Hilbert spaces if the following
is true:
��� For any � 
 � the space �� is continuously embedded into
�� , i.e. �� � �� and there exists a �� 
 � such that

�
�� � ���
��	 �
 � �� , and �� is dense in �� �

���� For any � 
 � and 
 � �� the linear functional
��	 
�� on �� can be continuously extended to a linear continuous

functional ��	 
���	� on ��� satisfying 	�
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tinuous functional � on �� has the form ��
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� ���	 i.e., ��� is isomorphic to the space of

linear continuous functionals on �� .
From (i) it follows that for any � � ��	 �� the space �� is ������
by �� and �� , i.e., �� � �� � �� with dense and contin-

uous embeddings. Suppose that ��� � ��� are densely and con-

tinuously embedded Hilbert spaces and � 	 ��� � ��� � �is a
continuous bilinear form, i.e., there exists a �
 
 � such that
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� ���� Then there ex-

ists a scale of Hilbert spaces �������with �� � ���	 �� �

��� and a linear bounded operator� 	 �� � ��� such that
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Here � � � is a parameter, ��	  � is a metric space. For any
� � � we assume that ���� � 
�!�	 !���	 ���� �
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" � � � �	 !�	 !��	 ��	 ���	�	"	�	� are real

Hilbert spaces. A pair �$���	 ����� � �
��	 � �!�� �

�
��	 � ���� is said to be a �	�
��	� of (3.1)-(3.4) on ��	 � �

if � �$���	 ������ � �
��	 � �!��� � �
��	 � ����� and

there exists a pair�����	 ����� � �
��	 � � ����
��	 � ���
such that �$���	 ����	 ����	 ����� satisfies (3.1)-(3.4) for a.e. � �

��	 � � and
��
� 
�$���	 �� � % ��� We assume that for any

� 
 � such solutions exist.

��������� 	
� Suppose that �&��	 � �&��	 �'�� and
� �'�� are scales of real Hilbert spaces (	
�������	� and 	
��
�
� ������, respectively) and �� � 
�!�	 &��	

(� � 
��	 &��	 ��� � 
��� 	 �&��	 �(� � 
��	 �'��	
)� � 
�!�	 '��	 �� � 
��	 '��	
�)� � 
���	 �'�� and ��� � 
��	 �'�� are scales of lin-

ear operators (	
�������	� and 	
��
� 	�����	��, respec-
tively). If �$���	 ����	 ����	 ����� is a response of (3.1)-(3.4) and
�	 ��	 �	 �� ��	are arbitrary scale parameters the function

*��	 �	 ��� � ���$��� � (�����	 �������� �
�(�������

�����
is called 	
�������	� �����
������ or ���� ������� and
the function

Assume that + � �+�	 � � � 	 +�� is the location in �	 � �

�� is the time, , � �,�	 � � � 	 ,�� is the unit normal to

�	 -�+	 �� � �-��+	 ��	 � � � 	 -��+	 ��� are the displace-

ments, � � ��+	 �� is the temperature, . � �./0 � is the stress

tensor, �� � �����+	 ��	 � � � 	 ��� �+	 ��� are the body forces
in � and 1 � 1�+	 �� is the density of heat sources.

1.3 Elastoplastic and heat equations
The ��
���	�� 	� �	��	� and ���� �������� are given by
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where �/0 � �/0 �+� and 2/0 � 2/0 �+� are the tensors of ther-
mal expansion and thermal conductivity, respectively, and the stress
tensor is defined by the �����	����	������	������� �������
������ ������	�
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where ��/02�� and �3/02�� are the tensors of elastic and viscosity

coefficients, respectively,�� /0 ��	����
� is the plastic part given
by �-dependent hysteresis operators.

As 
	
����� ��� ������� �	�����	�� we have:
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2.2 A simplified contact problem

Suppose � � �� is a bounded domain, �� is smooth, - �
-�+	 �� and � � ��+	 �� are the displacement and the temper-
ature in the elastic body satisfying the system

-�� � 
5-� ��- � �- � ����	 ���� � #������ 	 �����

�� � ���� -� ����� � �	 ���� � ������� 	 �����

with �	 �	 5	 � constants, and the boundary and initial conditions
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is called (unobservable) output of (3.1)-(3.4). For two responses
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of (3.1)-(3.4) and arbitrary scale parameters �	 ��	 �	 �� � �we
define the deviations
�$��� � $���� � $
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��������� 	
� Suppose that � 
 �	 3 
 ��� % 3� and
�� 
 � are numbers. The observation (3.5) is ����������� �	�
��� 
��
�����	� ��	�� 	� ��	 3	 �������
������ of the output
(3.6) at � � �� if there exist continuous near �� real-valued functions
����	 �����	 ���� and ����� with the following properties:

a) For � � �� the observation (3.5) with � � �����	 �� �
������ is ����������� �	� ��� ��	 3	 �������
����� of the

output (3.6) with � � �����	
�� � ������	 i.e., there exists an

5� � 5����� 
 � such that for arbitrary two responses (3.7) and
their deviations (3.8) - (3.10) which satisfy
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where �� � ��/� �+	 ��� are the applied tractions;

�� ������	��� ������ ��� ��������
�� 	� ��

By Coulomb’s law of dry friction
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where .� � ./0,/,0 and -� � -/,/ are the normal com-

ponents of . and - on �, respectively, ./� � ./0,0 � .�,/

and -/� � -/ � -�,/ are the tangential components of . and
- on �, respectively, 8 is the friction coefficient, �� is the velocity of
the moving rigid body, Æ is a positive constant, �' is the temperature
of the rigid body, *� ��	 6� is a prescribed distance function and 29 is
coefficient of heat exchange between elastoplastic body and rigid body.
�� ������� ����� ��� �	 ��������� �	�
��	�� �	� (1.1)-
(1.7).
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3. Observations for bifurcations
The weak form of (2.1), (2.2) is a ������������������� ��
���
������ �	�������� of a �������	��� ����
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b) For � � �
 the observation (3.5) with � � ���
�	 �� �
����
� is ����������� �	� ��� ��	 3	 ���������
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and their deviations (3.8) - (3.10) which satisfy (3.11) the observation
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for a time �� � ��	 ��� implies the output property

� 6��
�
	 ���
��



� � �6��

�
	 ����
��


 � 3 �

������ 	
� The “loss of ��	 3	 ���-stability”-bifurcation for
visco-elastoplastic systems (3.1)-(3.4) means the loss of stability on a
finite time interval and is connected with the creation of almost-periodic
solutions ([3]). Frequency-domain conditions for observations of this
type of bifurcation are derived in [1]. Oberservations that are determin-
ing for upper fractal dimension estimates of negatively invariant sets of
variational inequalities are considered in [2].
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