Time series analysis of elasto-plastic bifurcations
based on extremely short observation times

H. Kantz, V. Reitmann

Max-Planck-Institute for the Physics of Complex Systems, Dresden

1Thermovisco-elastoplastic contact
1.1 The mechanical model

measurements rigid moving cylinder
'y T ¢ -free and moving boundary
N thermovisco-elastoplastic
‘ v material
= W = = u=zu
= = = =

1.2 Notation

Suppose © C 2" is a domain (reference configuration of the visco-
elastoplastic body), T = 8% is the piecewise Lipschitz continuous
boundary divided in the three disjunct parts " ;, (where the body is
clamped), T" 5y (where the tractions act) and I" + (where the visco-
elastoplastic body comes in frictional contact with a rigid moving body).

Assume that = = (=1, ..., =™) is the location in 2, ¢ €
B is the time, n = (nl, ... ,n") is the unit normal to
T,ou(e, t) = (ul(a,t),...,u™(=,t)) are the displace-

ments, ® = O(=z, t) is the temperature, o = (o—ij) is the stress
tensor, f 4 = (f}; (z,t), ..., f;”(m, t)) are the body forces
inQand x = x(a, t) is the density of heat sources.

1.3 Elastoplastic and heat equations

The equations of motion and heat transfer are given by

[o®d (5 + i) ; + £y =

in @ x(0,T), (1.1)

©— (k70 ;)i =—cu;;+krin Qx(0,T), (1.2)

where ¢*? = ¢*J (2) and k*J = k*J (=) are the tensors of ther-
mal expansion and thermal conductivity, respectively, and the stress
tensor is defined by the thermowisco-elastoplastic stress-
strain relation

ol = aliklyy oy piikla, o lie 4 Pl 1 0]
in @ x (0, T), (1.3)

Wwhere (aijkl ) and (bijkl ) are the tensors of elastic and viscosity
coefficients, respectively, { P *7 [-, ©]} ©> 0 is the plastic part given
by ©-dependent hysteresis operators.
As boundary and initial conditions we have:
a) Prescribed displacements and temperature

u=0 on Tp x (0,T);

© =0, on (TpUTN)X(0,T); (1.4)

b) Prescribed boundary forces

c"n; =fyn on 'y, (1.5)

where fn = (fliv(m, t)) are the applied tractions;

c) Frictional stress and temperature on T' o

By Coulomb’s law of dry friction

log| < ploarl(l = 8loarl)y on Do x (0, T),

log| < ploal(@ = dlop Dy = wg =vg ,  (1.6)
log| = ploarl(l = 8lopry = g = vg— Aoy |

k90 ;i =ploal(l = 8loyDysc(, lig —vol) —

ke(© — OR), (1.7)
where o zr = otid ninjand ups = uini are the normal com-
ponent§ of o an.d uwonT, re_spectively, ai,. = ot nj — cani
and ui,. = u' — upsn" are the tangential components of o and

u on T, respectively, u is the friction coefficient, v is the velocity of
the moving rigid body, § is a positive constant, © g, is the temperature
of the rigid body, s~ (-, ) is a prescribed distance function and k¢ is
coefficient of heat exchange between elastoplastic body and rigid body.
In general there are no classical solutions for (L1)-

€.7).
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2. Coupled variational systems
2.1 Scales of Hilbert spaces

A collection of real Hilbert spaces { Hq } o ¢ Withnorm || - || o and
scalar product (-, -) o is called scale of Hilbert spaces if the following
is true:

(i) Forany @ > 0 the space H o is continuously embedded into
Hg, ie. Ho C Hpg and there exists a ¢1 > 0 such that
Ilhllg < e1llhlla, Yh € Ho,and Hy isdensein Hp ;
(ii) For any « > 0 and h € Hg the linear functional
(-, h)p on Hq can be continuously extended to a linear continuous

r
functional (-, h) _ o o ON H_ satisfying [(h , k) _q ol <
7 7
Ik l_qllklla, YR € H_,, Vh € Hg. Anylinear con-
’
tinuous functional I on Hq has the form I(h) = (h ,h)_q o

’
with some h € H_,, i.e., H_, is isomorphic to the space of
linear continuous functionals on H .
From (i) it follows that forany o« € (3, ) the space H q is rigged
by Hﬁ and Hey, i.e., Hy C Ha C Hﬁ with dense and contin-
uous embeddings. Suppose that ﬁl (@ I:IO are densely and con-
tinuously embedded Hilbert spaces and a : Hy X Hy — Risa
continuous bilinear form, i.e., there exists a co > 0 such that

’ i o
a(h,h ) < eallh]|l1 \]h’||1 , Yh,h € Hjp.Then thereex-
ists a scale of Hilbert spaces { Hq } o ¢ With Hy = Hqi,Hg =
H{ and alinear bounded operator A : Hy — H _ 1 such that

’ I ’
(Ah,h )_q1q =a(h,h ), Yh,h € Hy.

Example 2.1 Suppose @ C 2" is a domain and NV is an ar-
bitrary natural number. {H&N) }agn isthe scale of fractional
Sty cpemesaiE thatHl(N) = wh2(),

l=0,1,..., N, withnorms ||u||2 (N) given by

H&

&
/Quu\2 + 2 IDPwPas =l g
|B]=1
if o > 0 integer,
B _ pB 2
2 |IDPu(z) — DPu(y)|
2+ 3 [ [ T deay,
whk, sz dale [o — y|k+2A
if a=k-+X>0,k > 0integer, X € (0, 1),
d S if < 0.
|/Qu(m)v(m) 2| ,if o

v =1
Il ”H(N)

—a

2.2 A simplified contact problem

Suppose @ C B is a bounded domain, 9 is smooth, u =
w(x, t) and © = ©(=a, t) are the displacement and the temper-
ature in the elastic body satisfying the system

ugy +2eup — Au + au = (1), () € ¢(O(t)), (2.1)
O — BAO +u — v((t) =0,((t) = g(O(t)), (2.2)
with o, 3, e, v constants, and the boundary and initial conditions

uw=0, ®=0 ondQ x (0,T) (2.3)
u(+,0) = ug(-), u(-,0) =wu1(:),0(,0) =Opin Q.
. (2.4)
@ :® — 2% andg:® — R are nonlinear maps satisfying
vg(v) — €2 >0, Vv € B, VE € ¢(v) (2.5)

and g = G’, i.e. g has a Fréchet differentiable potential.

Suppose .A is the self-adjoint positive-definite operator generated

by (—A) with zero boundary conditions and having the domain
o

D(A) = W2’2(9)ﬁ wl2 (€2). Introduce the spaces Vg =

L2(Q), v, = D(AL/2)and vy = D(A) with

(w,v)s = (A" %0, 4%/ 20) | Vu,v € Vs, 5 =0,1,2,

(2.6)
as scalar productand Y = VS+1 X Vs, Zs = Vs+1 5
s = 0, 1, with the scalar productin Y5 given by
((u,v), (8, 9)s = (u, @) 541 + (v, ¥)s,
V(u,v), (@,5) € Ys . (2.7)

3. Observations for bifurcations

The weak form of (2.1), (2.2) is a parameter-dependent hybrid
system consisting ofa variational inequality and a vari-
ational equality of the type

(I —A()y — B(@)&,n—v)y_,,vy (3.1)
+ ¥(n,q) — ¥(y,q) >0,

w(t) = C(q)y, &£(t) € w(t, w(t), v(t),q), (8.2)
vn € L2(0, T; Y1), ae. on (0, T),

(2 - A1(9)z = B1(9)€,¥)z_,,z, =0, (3.3)

v(t) = C1(a)z, C(t) € g(t, w(t), v(t), q),

vs € L2(0, T; Z1),ae on(0, T) . (3.4)
Here ¢ € Q is a parameter, (Q, d) is a metric space. For any
g € Q we assume that A(q) € L(Y1,Y_7),B(q) €
L(E,Y_1),C(a) € L(Y_1,W),¥(,q) : Y1 —
?,+,<p(-,-,-,q) P By X WX Y o 2=, A7(q) €
L£(Z1,Z2_1),B1(qa) € L(Z,Z2_1),9(-,",a) : By X
W xY = Z2,Y1,Y_1,21,Z_1,E,W,Z,7 are real
Hilbert spaces. A pair {y(:), 2(-)} € LZ2(0, T;Yy) X
LZ(O, T; Z1) is said to be a solution of (3.1)-(3.4) on (0, T')
it {9(), 2()} € L2(0,T;Y_q1) x L2(0, T; Z_1) and
there exists a pair {£(-), ¢(-)} € L2(0, )X L2(0, T; Z)
suchthat {y(-), z(-), £(), ¢(-)} satisfies (3.1)-(3.4) fora.e. t €
(0, T) and fOT W(y(t), g)dt < +4oo. We assume that for any
T > 0 such solutions exist.

Definition 3.1 Suppose that {Sa}, {Sa}, {Ra} and
{Rqn } are scales of real Hilbert spaces (observation and out-
put spaces,respectively)and Do € L(Y7, Sa),

Eq € L(E, Sa), Da € £(Z1,5a), Ea € £(Z, Ra),
Mo € L(Y1, Ra), Na € L(E, Ra),

Mq € £(Z1,Rq)and No € L(Z, Rq) are scales of lin-
ear operators (observation and output operators, respec-
tively). If {y(-), z(-), €(-), ¢(-)} is a response of (3.1)-(3.4) and
a, &, 3,3 € ,are arbitrary scale parameters the function

s(-, e, &) = (Day(:) + Bak(:), Dg=(-) + E&C(é))s

is called observation (measurementor time series) and
the function

(2 8,8) = (Mgy(-) + Np€(), Mz=(-) + N5c()),
3.6)

is called (unobservable) output of (3.1)-(3.4). For two responses

{vi(), 2:(), € (), G(DY, i =1,2, (3.7)
of (3.1)-(3.4) and arbitrary scale parameters a, &, 3, 3 € 2 we
define the deviations
Ay() =y1() —y2(-), Az(-) = 21(-) — 22(-),

AL() =€1() —€2(), AC() =¢1() — C2(1), (3.8)

As(,a)? = IDaAy() + EaAcO)E,
A3, 02 =IDsA=0)+ B5ACONG, . (3.9

Ar(, )2 = IMgAY() + NgAEO)IF, »

AR, )% = IMzA=() + N[;Ac(-)n%é . (3.10)

Definition 3.2 Suppose thata > 0,b > 0(a < b) and
t1 > 0 are numbers. The observation (3.5) is determining for
the bifurcation “loss of (a, b, t1)-stability” of the output
(3.6)atqg = q* ifthere exist continuous near g * real-valued functions
a(-), &(-), B(-)and B(-) with the following properties:
a) For ¢ = g the observation (3.5) with @ = a(q1),a =
a(qq) is determining for the (a, b, tq)-stability of the
output (3.6) with 8 = B(q1), 3 = B(q1), ie., there exists an
1 = e1(q1) > 0 such that for arbitrary two responses (3.7) and
their deviations (3.8) - (3.10) which satisfy
2 = F 2

Ar(0,B(q1))” + A7(0,8(q1))” < a (3.11)

the observation property

t
/0 Vas(t, a(ar)? + A5t &(a1)31dt < €1 (3.12)

implies the output property

An(t, Bla1)? + AF(E, Ala1)% < b, Vi€ (0,41)

b) For ¢ = gg the observation (3.5) with @ = a(q2),a =
&(qo) is determining for the (a,b,ty)-instability of
the output (3.6) with 8 = B(g2), B8 = B(a2), ie. there exists
aneng = eo(gg) > O such that for arbitrary two responses (3.7)
and their deviations (3.8) - (3.10) which satisfy (3.11) the observation
property % 5 5
[As(t, a(g2))” + A5(t, a(g2))7]dt > 2

foratime t* € (0, tq) implies the output property

Ar(t™, B(a2)” + A", 6(a)® > b
Remark 3.1 The “loss of (a, b, tq)-stability”-bifurcation for
visco-elastoplastic systems (3.1)-(3.4) means the loss of stability on a
finite time interval and is connected with the creation of almost-periodic
solutions ([3]). Frequency-domain conditions for observations of this
type of bifurcation are derived in [1]. Oberservations that are determin-
ing for upper fractal dimension estimates of negatively invariant sets of
variational inequalities are considered in [2].
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