Nonautonomous period-doubling border-collision bifurcations

Volker Reitmann* and Anastasia Maltseva

St. Petersburg State University Russia (SPbSU)
Faculty of Mathematics and Mechanics
*Supported by DAAD

The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications

$$
\begin{aligned}
& \text { Taipei, Taiwan } \\
& \text { July } 5 \text { - July 9, } 2018
\end{aligned}
$$

Cardiac conduction model

Consider the following system:

$$
\left\{\begin{array}{l}
\left.A_{k+1}=A_{\min }+R_{k} \exp \left(-\frac{A_{k}+H_{k}}{\tau_{\text {fat }}}\right)+\gamma \exp \left(-\frac{H_{k}}{\tau_{\text {fat }}}\right)+\beta_{k} \exp \left(-\frac{H_{k}}{\tau_{\text {rec }}}\right)\right), \\
R_{k+1}=R_{k} \exp \left(-\frac{A_{k}+H_{k}}{\tau_{\text {fat }}}\right)+\gamma \exp \left(-\frac{H_{k}}{\tau_{\text {fat }}}\right) \tag{1}
\end{array}\right.
$$

where:

$$
\beta\left(A_{k}\right):=\beta_{k}=\left\{\begin{array}{l}
201-0.7 A_{k}, \text { for } A_{k}<130, \\
500-3 A_{k}, \text { for } A_{k} \geqslant 130
\end{array}\right.
$$

- $A_{\text {min }}, \tau_{\text {rec }}, \gamma, \tau_{\text {fat }}$ are positive constants, $k \in \mathbb{Z}_{+}$;
- $(A, R) \in \mathbb{R}^{2}$;
- A_{k} is the conduction time of the k th impulse;
- H_{k} is the nodal recovery time during cycle k.
- R_{k} is the drift in the nodal conduction time of the k th impulse.

Sun J. et al (1995), Maltseva A., R. V. (2014)

Dynamical system generated by an autonomous cardiac

 conduction systemConsider the following dynamical system:

$$
\begin{equation*}
\left(\left\{\varphi^{k}\right\}_{k \in \mathbb{Z}},\left(\mathcal{M}, \rho_{\mathcal{M}}\right)\right), k \in \mathbb{Z}_{+}, \tag{2}
\end{equation*}
$$

where

- $\mathcal{M}=\mathbb{R}^{2}$,
- $\rho_{\mathcal{M}}$ is a standard metric,
- $\varphi^{k}: \mathcal{M} \rightarrow \mathcal{M}, k \in \mathbb{Z}_{+}$,
- $\varphi(A, R)=\left(A_{\text {min }}+R+\beta(A) \exp \left(-\frac{H}{\tau_{\text {rec }}}\right), R \exp \left(-\frac{A+H}{\tau_{\text {fat }}}\right)+\gamma \exp \left(-\frac{H}{\tau_{\text {fat }}}\right)\right)$, $(A, R) \in \mathbb{R}^{2}$,
- H is a positive constant,
- $\beta(A):=\left\{\begin{array}{l}201-0.7 A, \text { for } A<130, \\ 500-3 A, \text { for } A \geqslant 130 .\end{array}\right.$

Period-doubling border-collision bifurcation

Using the smoothness of the map φ from the left and from the right of the border $\Gamma=\{(130, R) \mid R \in \mathbb{R}\}$, consider the linearization of φ in these two smooth domains.
Suppose that:

- p is an equilibrium point of dynamical system (2), which exists at the border Γ;
- P and Q are linearization matrices from the left and from the right of the border respectively;
- $\sigma_{P}=\operatorname{det} P, \sigma_{Q}=\operatorname{det} Q, \tau_{P}=\operatorname{tr} P, \tau_{Q}=\operatorname{tr} Q$.

Theorem 1

Suppose that the equilibrium point p of dynamical system (2) is stable when $H<H_{\text {bif }}$ (i.e. $\left|\sigma_{P}\right|<1,-\left(1+\sigma_{P}\right)<\tau_{P}<1+\sigma_{P}$), and it become unstable when H passing throught $H_{\text {bif }}$. If
$\left|\sigma_{P} \sigma_{Q}\right|<1,-\left(1-\sigma_{Q}\right)\left(1-\sigma_{P}\right)<\tau_{P} \tau_{Q}<\left(1+\sigma_{Q}\right)\left(1+\sigma_{P}\right)$ then a supercritical period-doubling border-collision bifurcation occurs when H is passing throught $H_{b i f}$.

Hassouneh M. A. (2003), Schkolnik D. (2018)

Dissipativity and existence of a global \mathcal{B}-attractor

Theorem 2

Dynamical system (2) is dissipative with the dissipativity region:

$$
\mathcal{D}=\left[0, \frac{\eta}{1-3 \varepsilon}\right] \times\left[0, \frac{\gamma}{1-\lambda}\right] \text {, where }
$$

$\eta=A_{\text {min }}+\frac{\gamma}{1-\lambda}+500 \exp \left(-\frac{H_{\text {min }}}{\tau_{\text {rec }}}\right)$,
$\varepsilon=-\frac{H_{\text {min }}}{\tau_{\text {rec }}}<\frac{1}{3}, \lambda=\exp \left(-\frac{A_{\text {min }}+H_{\text {min }}}{\tau_{\text {fat }}}\right) \neq 1$.

Theorem 3

Dynamical system (2) has a global \mathcal{B}-attractor in the form:

$$
\begin{equation*}
\mathcal{A}(\mathcal{M})=\omega(\mathcal{D})=\cap_{k \in \mathbb{Z}_{+}} \overline{U_{s \geqslant k}, s \in \mathbb{Z}_{+} \varphi^{s}(\mathcal{D})}, \tag{3}
\end{equation*}
$$

where \mathcal{D} is the dissipativity region, $\omega(D)$ is the ω-limit set of dynamical system (2).

Invariant measures and the Perron-Frobenius operator

Let us consider the following assumptions:
(1) in addition to the metric structure $\left(\mathcal{M}, \rho_{M}\right)$ we have the structure of a measurable space $(\mathcal{M}, \mathfrak{B}, \mu)$, where \mathfrak{B} is a σ-algebra over \mathcal{M} and μ is a measure on \mathfrak{B};
(2) φ is nonsingular, i.e $\mu(\varphi-1(B))=0, \forall B \in \mathfrak{B}: \mu(B)=0$.

Definition 1

The Perron-Frobenius operator $P=P_{\varphi}: L^{1}(\mathcal{M}) \rightarrow L^{1}(\mathcal{M})$ for the dynamical system (2) is defined by

$$
\int_{B} P \eta d \mu:=\int_{\varphi^{-1}(B)} \eta d \mu, \forall B \in \mathcal{B}, \forall \eta \in L^{1}(\mathcal{M})
$$

Perron-Frobenius operator for the dynamical system

 generated by an autonomous cardiac conduction systemFor the case $A<130$:

$$
\begin{aligned}
\operatorname{P\eta }(A, R):= & \left\lvert\, \operatorname{det} J\left(-\frac{10}{7}\left(\left(A-A_{\text {min }}-R\right) \exp \left(\frac{H}{\tau_{\text {rec }}}\right)-201\right),\right.\right. \\
& \left.\left(R-\gamma \exp \left(-\frac{H}{\tau_{\text {fat }}}\right) \exp \left(\frac{A+H}{\tau_{\text {fat }}}\right)\right) \right\rvert\, \times \\
& \eta\left(-\frac{10}{7}\left(\left(A-A_{\text {min }}-R\right) \exp \left(\frac{H}{\tau_{\text {rec }}}\right)-201\right),\right. \\
& \left(R-\gamma \exp \left(-\frac{H}{\tau_{\text {fat }}}\right) \exp \left(\frac{A+H}{\tau_{\text {fat }}}\right)\right),
\end{aligned}
$$

where
$J=\left(\begin{array}{ll}J_{1,1} & J_{1,2} \\ J_{2,1} & J_{2,2}\end{array}\right), J_{1,1}=-\frac{10}{7} \exp \left(\frac{H}{\tau_{\text {rec }}}\right), J_{1,2}=\frac{10}{7} \exp \left(\frac{H}{\tau_{\text {rec }}}\right)$,
$J_{2,1}=-\frac{10}{7 \tau_{\text {fat }}} \exp \left(\frac{H}{\tau_{\text {rec }}}\right)\left(R-\gamma \exp \left(-\frac{H}{\tau_{\text {fat }}}\right)\right) \exp \left(\frac{-\frac{10}{7}\left(\left(A-A_{\text {min }}-R\right) \exp \left(\frac{H}{\tau_{\text {rec }}}\right)-201\right)+H}{\tau_{\text {fat }}}\right)$,
$J_{2,2}=\left(1+\frac{10}{7 \tau_{\text {fat }}} \exp \left(\frac{H}{\tau_{\text {rec }}}\right)\left(R-\gamma \exp \left(-\frac{H}{\tau_{\text {fat }}}\right)\right)\right) \exp \left(\frac{-\frac{10}{7}\left(\left(A-A_{\min }-R\right) \exp \left(\frac{H}{\tau_{\text {rec }}}\right)-201\right)+H}{\tau_{\text {fat }}}\right)$.
Linnik P. L. (2018)

Perron-Frobenius operator for the dynamical system

 generated by an autonomous cardiac conduction systemFor the case $A \geqslant 130$:

$$
\begin{aligned}
P \eta(A, R):= & \left\lvert\, \operatorname{det} J\left(-\frac{1}{3}\left(\left(A-A_{\min }-R\right) \exp \left(\frac{H}{\tau_{\text {rec }}}\right)-500\right),\right.\right. \\
& \left.\left(R-\gamma \exp \left(-\frac{H}{\tau_{\text {fat }}}\right) \exp \left(\frac{A+H}{\tau_{\text {fat }}}\right)\right) \right\rvert\, \times \\
& \eta\left(-\frac{1}{3}\left(\left(A-A_{\text {min }}-R\right) \exp \left(\frac{H}{\tau_{\text {rec }}}\right)-500\right),\right. \\
& \left(R-\gamma \exp \left(-\frac{H}{\tau_{\text {fat }}}\right) \exp \left(\frac{A+H}{\tau_{\text {fat }}}\right)\right),
\end{aligned}
$$

where
$J=\left(\begin{array}{ll}J_{1,1} & J_{1,2} \\ J_{2,1} & J_{2,2}\end{array}\right), J_{1,1}=-\frac{1}{3} \exp \left(\frac{H}{\tau_{\text {rec }}}\right), J_{1,2}=\frac{1}{3} \exp \left(\frac{H}{\tau_{\text {rec }}}\right)$,
$J_{2,1}=-\frac{1}{3 \tau_{\text {fot }}} \exp \left(\frac{H}{\tau_{\text {rec }}}\right)\left(R-\gamma \exp \left(-\frac{H}{\tau_{\text {fot }}}\right)\right) \exp \left(\frac{-\frac{1}{3}\left(\left(A-A_{\text {min }}-R\right) \exp \left(\frac{H}{\tau_{\text {rec }}}\right)-500\right)+H}{\tau_{\text {frt }}}\right)$,
$J_{2,2}=\left(1+\frac{1}{3 \tau_{\text {fat }}} \exp \left(\frac{H}{\tau_{\text {rec }}}\right)\left(R-\gamma \exp \left(-\frac{H}{\tau_{\text {fat }}}\right)\right)\right) \exp \left(\frac{-\frac{1}{3}\left(\left(A-A_{\text {min }}-R\right) \exp \left(\frac{H}{\tau_{\text {rec }}}\right)-500\right)+H}{\tau_{\text {fat }}}\right)$.
Linnik P. L. (2018)

Computing of the density of an invariant measure

Using the spectral property of the Perron-Frobenius operator compute the density of invariant measure by an iteration method:

```
\(\eta_{0}=1\),
\(\eta_{1}=P \eta_{0}\)
\(\eta_{n}=P \eta_{n-1}=P^{n} \eta_{0}\).
```


Density of an invariant measure

Figure 1: Density of an invariant measure for system (2)

$$
\left(A_{\min }=33, H=30, \tau_{r e c}=70, \tau_{\text {fat }}=30, \gamma=0.3\right) .
$$

Basic tools of cocycle theory I

Definition 2 (Discrete-time base flow)

Let $\left(\mathcal{Q}, \rho_{\mathcal{Q}}\right)$ be a metric space. A discrete-time base flow on $\left(\mathcal{Q}, \rho_{\mathcal{Q}}\right)$ is defined by the mapping $\sigma^{(\cdot)}(\cdot): \mathbb{Z} \times \mathcal{Q} \rightarrow \mathcal{Q},(k, q) \mapsto \sigma^{k}(q)$ satisfying the following properties:
(1) $\sigma^{0}(\cdot)=i d_{\mathcal{Q}}$;
(2) $\sigma^{k+s}(\cdot)=\sigma^{k}(\cdot) \circ \sigma^{s}(\cdot)$ for all $k, s \in \mathbb{Z}$;

Definition 3 (Discrete-time cocycle over the base flow)

Let $\left(\mathcal{N}, \rho_{\mathcal{N}}\right)$ be a metric space. A discrete-time cocycle over the base flow $\left(\left\{\sigma^{k}\right\}_{k \in \mathbb{Z}}, \mathcal{Q}\right)$ is defined by the mappings $\left\{\psi^{k}(q, \cdot)\right\}_{\substack{k \in \mathbb{Z}_{\mathbb{+}} \\ q \in \mathcal{Q}}}$, where the mapping ψ has the folowing properties:
(1) $\psi^{k}(q, \cdot): \mathcal{N} \rightarrow \mathcal{N}$ for all $k \in \mathbb{Z}_{+}$and all $q \in \mathcal{Q}$;
(2) $\psi^{0}(q, \cdot)=i d_{\mathcal{N}}$ for all $q \in \mathcal{Q}$;
(3) $\psi^{k+s}(q, \cdot)=\psi^{k}\left(\sigma^{s}(q), \psi^{s}(q, \cdot)\right)$, for all $k, s \in \mathbb{Z}_{+}$and all $q \in \mathcal{Q}$.

Further notation: (σ, ψ).

Definition 4 (Skew-product dynamical system)

Consider the metric space $\left(\mathcal{W}, \rho_{\mathcal{N}}\right)$, where $\mathcal{W}:=\mathcal{Q} \times \mathcal{N}$. A skew product dynamical system is a pair $\left(\left\{\hat{\psi}^{k}\right\}_{k \in \mathbb{Z}_{+}},\left(\mathcal{W}, \rho_{\mathcal{W}}\right)\right)$, where $\hat{\psi}^{k}: \mathcal{W} \rightarrow \mathcal{W}$. $\hat{\psi}^{k}(w):=\left(\sigma^{k}(q), \psi^{k}(q, v)\right)$ for all $w=(q, v) \in \mathcal{W}$ and all $k \in \mathbb{Z}_{+}$.

Parametrized cocycle generated by a nonautonomous

 cardiac conduction systemLet us study the parametrized family of skew products:

$$
\begin{equation*}
\hat{f}_{\alpha}: \mathcal{H}_{\alpha} \times \mathbb{R}^{2} \rightarrow \mathcal{H}_{\alpha} \times \mathbb{R}^{2},(H, A, R) \mapsto\left(\sigma_{\alpha}(H), f_{\alpha}(H, A, R)\right), \alpha \in \Lambda, \tag{4}
\end{equation*}
$$

$\left(\Lambda, \rho_{\Lambda}\right)$ is a parameter space, $\sigma_{\alpha}: \mathcal{H}_{\alpha} \rightarrow \mathcal{H}_{\alpha}$ is the shift map
with the fibre maps

$$
\begin{gather*}
f_{\alpha}(H, A, R)=\left\{\begin{array}{l}
f_{1, \alpha}(H, A, R), \text { for } A<130, R \in \mathbb{R} \\
f_{2, \alpha}(H, A, R), \text { for } A \geqslant 130, R \in \mathbb{R}
\end{array}\right. \tag{5}\\
f_{1, \alpha}(H, A, R)=\binom{A_{\min }+R \exp \left(-\frac{A+H_{0}}{\tau_{\text {fat }}}\right)+\gamma \exp \left(-\frac{H_{0}}{\tau_{\text {fat }}}\right)+(201-0,7 A) \exp \left(-\frac{H_{0}}{\tau_{\text {rec }}}\right)}{R \exp \left(-\frac{A+H_{0}}{\tau_{\text {fat }}}\right)+\gamma \exp \left(-\frac{H_{0}}{\tau_{\text {fat }}}\right)}, \\
f_{2, \alpha}(H, A, R)=\binom{A_{\min }+R \exp \left(-\frac{A+H_{0}}{\tau_{\text {fat }}}\right)+\gamma \exp \left(-\frac{H_{0}}{\tau_{\text {fat }}}\right)+(500-3 A) \exp \left(-\frac{H_{0}}{\tau_{\text {rec }}}\right)}{R \exp \left(-\frac{A+H_{0}}{\tau_{\text {fat }}}\right)+\gamma \exp \left(-\frac{H_{0}}{\tau_{\text {fat }}}\right)}, \\
H=\left(H_{0}, H_{1}, H_{2}, \ldots\right) \in \ell^{2}\left(\mathbb{Z}_{+} ; \mathbb{R}\right)=\mathcal{H}_{\alpha} . \tag{6}
\end{gather*}
$$

Further notation: $\left(\sigma_{\alpha}, f_{\alpha}\right)$.

Basic tools of cocycle theory II

Definition 5 (Invariant subsets)

A family of bounded in \mathcal{N} subsets $\hat{\mathcal{Z}}=\{\mathcal{Z}(q)\}_{q \in \mathcal{Q}}$ is said to be invariant for the cocycle (τ, ψ) if $\psi^{k}(q, \mathcal{Z}(q))=\mathcal{Z}\left(\tau^{k}(q)\right)$ for all $k \in \mathbb{Z}_{+}$and $q \in \mathcal{Q}$.

Definition 6 (Globally \mathcal{B}-pullback attracting subsets)
A family $\hat{\mathcal{Z}}=\{\mathcal{Z}(q)\}_{q \in Q}$ is said to be globally \mathcal{B}-pullback attracting for the cocycle (τ, ψ) if $\operatorname{dist}\left(\psi^{k}\left(\tau^{-k}(q), \mathcal{B}\right), \mathcal{Z}(q)\right) \underset{k \rightarrow \infty}{\longrightarrow} 0$ for arbitrary $q \in \mathcal{Q}$ and for any bounded set $\mathcal{B} \subset \mathcal{N}$.

Definition 7 (Global \mathcal{B}-pullback attractor)

A family of compact subsets $\hat{\mathcal{A}}=\{\mathcal{A}(q)\}_{q \in Q}$ is called a global \mathcal{B}-pullback attractor for the cocycle (τ, ψ) if it is invariant and globally \mathcal{B}-pullback attracting.

Kloeden P.E., Schmalfuss B. (1997)

Uniform dissipativity and existence of a global \mathcal{B}-pullback attractor for the cocycle

Definition 8 (Uniform dissipativity)

We say that the cocycle (τ, ψ) is uniformly dissipative if there exists a compact set $\mathcal{D} \subset \mathcal{W}$ and k_{0} such, that $\psi^{k}(q, w) \subset \mathcal{D}$ for all $k \geqslant k_{0}, k \in \mathbb{Z}_{+}$, for all $q \in \mathcal{Q}$, for all $w \in \mathcal{W}$, where \mathcal{D} is a dissipativity region of the cocycle (τ, ψ).

Theorem 4

Cocycle $\left(\sigma_{\alpha}, f_{\alpha}\right)$ is uniformly dissipative, and the dissipativity region \mathcal{D}_{α} has the following form:

$$
\begin{equation*}
\mathcal{D}_{\alpha}=\left[0, \frac{\eta}{1-3 \varepsilon}\right] \times\left[0, \frac{\gamma}{1-\lambda}\right], \text { where } \tag{7}
\end{equation*}
$$

$\eta=A_{\text {min }}+\frac{\gamma}{1-\lambda}+500 \exp \left(-\frac{H_{\text {min }}}{\tau_{\text {rec }}}\right), \varepsilon=-\frac{H_{\text {min }}}{\tau_{\text {rec }}}<\frac{1}{3}, \lambda=\exp \left(-\frac{A_{\text {min }}+H_{\text {min }}}{\tau_{\text {fat }}}\right) \neq 1$.

Theorem 5

Cocycle ($\sigma_{\alpha}, f_{\alpha}$) has a global \mathcal{B}-pullback attractor in the form:

$$
\begin{equation*}
\mathcal{A}_{\alpha}(q)=\bigcap_{k \in \mathbb{Z}_{+}} \overline{\bigcup_{\substack{s \geqslant k, s \in \mathbb{Z}_{+}}} f_{\alpha}^{s}\left(\sigma_{\alpha}^{-s}(q), \mathcal{D}_{\alpha}\right)}, \forall q \in \mathcal{H}_{\alpha}, \alpha \in \Lambda \tag{8}
\end{equation*}
$$

where \mathcal{D}_{α} is a dissipativity region of cocycle $\left(\sigma_{\alpha}, f_{\alpha}\right)$.

Global \mathcal{B}-attractor for the cocycle generated by the nonautonomous cardiac conduction system

Figure 2: Deterministic forcing.

Figure 3: Random forcing with a Poisson distribution.

Measurable cocycles

Let $(\mathcal{Q}, \mathfrak{A}, \mathfrak{m})$ be a probability space.

Definition 9 (Metric dynamical system)

A metric dynamical system (MDS) is given by a map $\tau^{(\cdot)}(\cdot): \mathbb{Z} \times \mathcal{Q} \rightarrow \mathcal{Q}$ satisfying
(1) $\tau^{0}=\mathrm{id}_{\mathcal{Q}}$,
(2) $\tau^{k+s}=\tau^{k} \circ \tau^{s}, \forall k, s \in \mathbb{Z}$.
$\left\{\tau^{k}\right\}_{k \in \mathbb{Z}}$ are assumed to be measure preserving, i.e.

$$
\tau^{k}(\mathfrak{m})=\mathfrak{m}, \forall k \in \mathbb{Z}
$$

Suppose that $(\mathcal{N}, \mathfrak{B})$ is a measurable space.

Definition 10 (Measurable cocycle over the MDS)

A measurable cocycle over the $\operatorname{MDS}\left\{\tau^{k}\right\}_{k \in \mathbb{Z}}$ is given by a map $\psi: \mathbb{Z}_{+} \times \mathcal{Q} \times \mathcal{N} \rightarrow \mathcal{N}$ which is for fixed time a $(\mathfrak{A} \otimes \mathfrak{B}, \mathfrak{B})$-measurable mapping and satisfies for all $k, s \in \mathbb{Z}_{+}$and almost all $q \in \mathcal{Q}$ and $v \in \mathcal{N}$ the relations
(1) $\psi^{0}(q, v)=v$,
(2) $\psi^{k+s}(q, v)=\psi^{k}\left(\tau^{s}(q), \psi^{s}(q, v)\right)$.

Invariant measures for cocycles

Definition 11

An invariant measure $\hat{\mu}$ for the cocycle (τ, ψ) is a probability measure on $\mathfrak{A} \otimes \mathfrak{B}$ which is invariant w.r.t. the skew product $\left\{\hat{\psi}^{k}\right\}_{k \in \mathbb{Z}_{+}}$, i.e.

$$
\hat{\psi}^{k}(\hat{\mu})=\hat{\mu}, \forall k \in \mathbb{Z}_{+}
$$

and has the marginal $\pi_{\mathcal{Q}} \hat{\mu}=\mathfrak{m}$ where $\pi_{\mathcal{Q}}: \mathcal{Q} \times \mathcal{N} \rightarrow \mathcal{Q}$ is the projection onto \mathcal{Q}.

We can characterize invariant measures by their disintegration

$$
\begin{equation*}
\hat{\mu}(d(q, v))=\hat{\mu}_{q}(d v) \mathfrak{m}(d q) \tag{9}
\end{equation*}
$$

or by

$$
\begin{gather*}
\hat{\mu}(\hat{\mathcal{C}})=\int_{\mathcal{Q}} \hat{\mu}_{q}\left(\mathcal{C}_{q}\right) d \mathfrak{m}(q) \tag{10}\\
\text { where } \mathcal{C}_{q}=\{v \in \mathcal{N} \mid(q, v) \in \hat{\mathcal{C}}, \hat{\mathcal{C}} \in \mathcal{A} \otimes \mathfrak{B}\}
\end{gather*}
$$

The Perron-Frobenius operator for cocycles

Definition 12

The Perron-Frobenius operator P for the cocycle (τ, ψ) is defined by

$$
P \hat{\mu}(q, \mathcal{Z}(q)):=\hat{\mu}\left(q, \psi^{-1}(q, \mathcal{Z}(\tau(q)))\right), q \in \mathcal{Q}
$$

where $\psi^{-1}(q, \mathcal{Z}(q))$ is the preimage set under $\psi=\psi^{1}$ of the set $\mathcal{Z}(\tau(q)) \subset \mathcal{N}$.

Approximation of an invariant measure for the cocycle

Figure 4: Approximation of an invariant measure on the domain divided into 5×0.025 rectangles .

Bifurcation of invariant measures for cocycles

Let $\left(\mathcal{Q}_{\alpha}, \mathfrak{A}_{\alpha}, \mathfrak{m}_{\alpha}\right)$ be a family of probability spaces depending on a parameter $\alpha \in \Lambda$.
The maps $\left\{\sigma_{\alpha}^{k}\right\}_{k \in \mathbb{Z}, \alpha \in \Lambda}$ are assumed to be a measure preserving, i.e. $\sigma_{\alpha}^{k}\left(\mathfrak{m}_{\alpha}\right)=\mathfrak{m}_{\alpha}, k \in \mathbb{Z}, \alpha \in \Lambda$.
Let $\left\{\hat{\mu}_{\alpha}\right\}_{\alpha \in \Lambda}$ be a family of invariant measures for the parametrized skew product, i.e. $\hat{\psi}_{\alpha}^{k}\left(\hat{\mu}_{\alpha}\right)=\hat{\mu}_{\alpha}$ and $\pi_{\mathcal{Q}_{\alpha}} \hat{\mu}_{\alpha}=\mathfrak{m}_{\alpha}$ for $k \in \mathbb{Z}$ and $\alpha \in \Lambda$, where $\pi_{\mathcal{Q}_{\alpha}}: \mathcal{Q}_{\alpha} \times \mathcal{M}_{\alpha} \rightarrow \mathcal{Q}_{\alpha}$ denotes the projection on \mathcal{Q}_{α}.

Definition 13 (Bifurcation point of a family of invariant measures)

A parameter value α_{0} is called bifurcation point of a family of invariant measures of the family of invariant measures $\left\{\hat{\mu}_{\alpha}\right\}_{\alpha \in \Lambda}$ if this family is not structurally stable at α_{0}, i.e. if in any neighborhood of α_{0} there are parameter values $\alpha \in \Lambda$ such that $\left\{\hat{\psi}_{\alpha_{0}}^{k}\right\}$ and $\left\{\hat{\psi}_{\alpha}^{k}\right\}$ are not topologically equivalent.

Maltseva A., R. V. (2015), Arnold L. (1999)

References

(1) Arnold L. Random Dynamical Systems. Springer Monographs in Mathematics, Springer, Berlin, 1998.
(2) Hassouneh M.A. Feedback control of border collision bifurcations in piecewise smooth systems. Doctoral dissertation, University of Maryland, 2003.
(3) Kloeden P.E., Schmalfuss B. Nonautonomous systems, cocycle attractors and variable time-step discretization. Numer. Algorithms 14 (1997), 141-152.
(9) Sun J., Amellal F., Glass L., Billete J. Alternans and period-doubling bifurcation in atrioventricular nodal conduction. J. Theor. Biol. 173 (1995), 79-91.
(3) Imkeller P., Kloeden P. On the computation of invariant measures in random dynamical systems. Stochastics and Dynamics, 3, no. 2 (2003), 247-265.

References

(- Linnik P. L. Usage of the Perron-Frobenius operator for the determination of an invariant measure for the cardiac conduction system. Bachelor's thesis, Saint Petersburg State University, 2018.(In Russian.)
(8) Maltseva, A., R.V. Global stability and bifurcations of invariant measures for the discrete cocycles of the cardiac conduction system's equations. Math. Bohem., vol. 140, no. 2 (2015), 205-213.
(9) Maltseva, A., R.V. Bifurcations of invariant measures in discrete-time parameter dependent cocycles. Differential Equation, vol. 50, no. 13 (2014), 1718-1732.
(10) Maltseva, A., R.V. Global B-pullback attractors for cocycles generated by discrete-time cardiac conduction models. Proc. of the 11th AIMS Conference on Dynamical Systems, Differential Equations and Applications, 2016, Orlando, Florida, USA.
(1) R.V. Dynamical Systems, Attractors and Estimates of Their Dimension. Saint Petersburg State University Press, Saint Petersburg, 2013. (In Russian.)
(12) Schkolnik D.I. Bifurcations in a cardiac conduction system with discrete time and the use of contol. Bachelor's thesis, Saint Petersburg State University, 2018.(In Russian.)

