Boundedness and finite-time stability for multivalued doubly-nonlinear evolution systems generated by a microwave heating problem

Popov S., Reitmann V.*, Skopinov S.

Department of Applied Cybernetics
Faculty of Mathematics and Mechanics
Saint-Petersburg State University
* Supported by DAAD

The 8th International Conference on Differential and Functional Differential Equations International Workshop Differential Equations and Interdisciplinary Investigations

Moscow, Russia, August 2017

1 The two-phase microwave heating problem

Let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with C^{1}-boundary $\partial \Omega$.
Consider the microwave heating problem

$$
\begin{cases}\varepsilon(x) E_{t}(x, t)+\sigma(\theta) E(x, t)=\operatorname{curl} H(x, t), & (x, t) \in Q_{T}, \tag{1}\\ \mu(x) H_{t}(x, t)+\operatorname{curl} E(x, t)=0, & (x, t) \in Q_{T}, \\ b(\theta(x, t))_{t}=\nabla[k(x) \nabla \theta(x, t)]+\sigma(\theta)|E(x, t)|^{2} & (x, t) \in Q_{T},\end{cases}
$$

where $T \in \mathbb{R}_{+}, Q_{T}=\Omega \times[0, T), E(x, t)$ and $H(x, t)$ are the electric and magnetic fields, respectively, $\varepsilon(x), \mu(x)$ and $\sigma(\theta)$ are the electric permittivity, magnetic permeability and electric conductivity, respectively, $b(\theta)$ is the enthalpy operator, $k(x)$ is the thermal conductivity, $\sigma(\theta)|E(x, t)|^{2}$ is the Joule's heat and

$$
b(s)=\left\{\begin{array}{l}
b_{1}(s), \quad s<\widehat{\theta} \\
{\left[b_{1}(\widehat{\theta}), b_{2}(\widehat{\theta})\right], \quad s=\widehat{\theta}} \\
b_{2}(s), \quad s>\widehat{\theta}
\end{array}\right.
$$

is a piecewise smooth function with differentiable monotone increasing functions $b_{1}(s), b_{2}(s)$ such that $b_{1}(\widehat{\theta}) \leq b_{2}(\widehat{\theta})$.

Let $S_{T}=\partial \Omega \times[0, T)$.
Initial and boundary conditions:

$$
\begin{array}{ll}
\nu(x) \times E(x, t)=\nu(x) \times G(x, t), & (x, t) \in S_{T} \\
\theta(x, t)=0, & (x, t) \in S_{T} \tag{2}\\
E(x, 0)=E_{0}(x), H(x, 0)=H_{0}(x), \theta(x, 0)=\theta_{0}(x), & x \in \Omega
\end{array}
$$

where

- $\nu(x)$ is the outward unit normal on $\partial \Omega$
- $G(x, t)$ is a given external vector function on S_{T}
- $E_{0}(x), H_{0}(x)$ and $\theta_{0}(x)$ are given functions

2 The one-dimensional heating problem

Suppose that $\Omega=(0,1), E(x, t)=(0, e(x, t), 0)$ and $H(x, t)=(0,0, h(x, t))$, respectively.
Then we obtain the following system:

$$
\begin{cases}\varepsilon(x) e_{t}(x, t)+\sigma(\theta) e(x, t)=-h_{x}(x, t), & (x, t) \in(0,1) \times(0, T), \\ \mu(x) h_{t}(x, t)+e_{x}(x, t)=0, & (x, t) \in(0,1) \times(0, T), \tag{3}\\ b(\theta(x, t))_{t}=k(x) \theta_{x x}(x, t)+\sigma(\theta) e^{2}(x, t) & (x, t) \in(0,1) \times(0, T) .\end{cases}
$$

Let us introduce

$$
w(x, t)=\int_{0}^{t} e(x, \tau) d \tau
$$

Suppose that $\varepsilon(x), \mu(x), k(x) \equiv 1$
Then system (3) becomes

$$
\begin{cases}w_{t t}-w_{x x}+\sigma(\theta) w_{t}=0, & (x, t) \in(0,1) \times(0, T), \tag{4}\\ b(\theta)_{t}-\theta_{x x}=\sigma(\theta) w_{t}^{2}, & (x, t) \in(0,1) \times(0, T) .\end{cases}
$$

2 The one-dimensional heating problem

Boundary conditions:

$$
w(0, t)=0, w(1, t)=0, \theta_{x}(0, t)=\theta_{x}(1, t)=0, t \in(0, T)
$$

Initial conditions:

$$
w(x, 0)=0, w_{t}(x, 0)=w_{1}(x), \theta(x, 0)=\theta_{0}(x), x \in(0,1)
$$

Assumptions:

(A1) $w_{1} \in L^{2}(0,1), \theta_{0}$ is nonnegative and $\theta_{0} \in L^{2}(0,1)$.
(A2) $\exists \sigma_{0}, \sigma_{1}>0$ such that $\sigma_{0} \leq \sigma(z) \leq \sigma_{1}, \quad z \in[0, \infty)$.
Theorem 1
Suppose (A1)-(A2) are satisfied. Then the system (4) has for any $T>0$ a weak solution $w \in C^{1}\left(0, T ; H_{0}^{1}(0,1)\right), \theta \in L^{2}\left(0, T ; H_{0}^{1}(0,1)\right) \cap C\left([0, T] ; L^{2}(0,1)\right)$.
(Manoranjan, Showalter, Yin, 2006)

2 The one-dimensional heating problem

Definition 1

A pair of functions $(w(x, t), \theta(x, t))$ is called a weak solution of system (19) on the interval $[0, T], T>0$, if $w \in C^{1}\left(0, T ; H_{0}^{1}(\Omega)\right)$,
$\theta \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap C\left(0, T ; L^{2}(\Omega)\right)$ and the following equations are hold

$$
\begin{aligned}
\int_{0}^{T} \int_{0}^{1}\left[-\varepsilon(x) w_{t} \psi_{t}+\frac{1}{\mu(x)} w_{x} \psi_{x}+\sigma(\theta) w_{t}\right] d x d t & =\int_{0}^{1} \varepsilon(x) w_{1}(x) \psi(x, 0) d x, \\
\int_{0}^{T} \int_{0}^{1}\left[-b(\theta) \eta_{t}+\theta_{x} \eta_{x}-\sigma(\theta) w_{t}^{2} \eta\right] d x d t & =\int_{0}^{1} b\left(\theta_{0}\right) \eta(x, 0),
\end{aligned}
$$

for any test functions
$\psi \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap C\left(0, T ; L^{2}(\Omega)\right), \forall \eta \in H^{1}\left(0, T ; H^{1}(\Omega)\right)$, such that $\psi(x, T)=\eta(x, T)=0, \forall x \in \Omega$.

3 Doubly-nonlinear evolutionary system

Let $Y_{1, j}$ and $Y_{2, j}, j=1,0,-1$ be real Hilbert spaces and $(\cdot, \cdot)_{i, j}$ and $\|\cdot\|_{i, j}$ be scalar products and norms of $Y_{i, j}, \quad i=1,2, j=1,0,-1$, respectively.
The dense and continuous embeddings $Y_{1,1} \subset Y_{1,0} \subset Y_{1,-1}$ and $Y_{2,1} \subset Y_{2,0} \subset Y_{2,-1}$ are called rigged Hilbert space structures.
Consider the system

$$
\begin{align*}
& \frac{d}{d t} y_{1}=A_{1} y_{1}+B_{1}\left(g_{1}\left(z_{1}\right)+g_{2}\left(z_{1}, z_{2}\right)\right), z_{1}=C_{1} y_{1} \tag{5}\\
& \frac{d}{d t} \mathbb{B}_{2}\left(y_{2}\right)=A_{2} y_{2}+B_{2} \phi_{2}\left(z_{1}, z_{2}\right), z_{2}=C_{2} y_{2} \tag{6}\\
& y_{1}(0)=y_{01}, y_{2}(0)=y_{02} \tag{7}
\end{align*}
$$

where $y_{i} \in Y_{i, 1}, A_{i}: Y_{i, 1} \rightarrow Y_{i,-1}, B_{i}: \Xi_{i} \rightarrow Y_{i,-1}, C_{i}: Y_{i, 1} \rightarrow Z_{i}$ are linear bounded operators, $\mathbb{B}_{2}: Y_{2,1} \rightarrow Y_{2,1}$ is a nonlinear operator, $g_{1}: Z_{1} \rightarrow \bar{\Xi}_{1}, g_{2}: Z_{1} \times Z_{2} \rightarrow \bar{\Xi}_{1}, \phi_{2}: Z_{1} \times Z_{2} \rightarrow \bar{\Xi}_{2}$ are nonlinear functions, Ξ_{i} and $Z_{i}, i=1,2$ are some other Hilbert spaces, $y_{01} \in Y_{1,1}, y_{02} \in Y_{2,1}$.

3 Doubly-nonlinear evolutionary system

Let us define the following spaces:
$Y_{1}=Y_{1,1} \times Y_{2,1}, \quad Y_{0}=Y_{1,0} \times Y_{2,0}, Y_{-1}=Y_{1,-1} \times Y_{2,-1}$ with scalar products

$$
\left(\left(y_{1}, w_{1}\right),\left(y_{2}, w_{2}\right)\right)_{j}=\left(y_{1}, y_{2}\right)_{1, j}+\left(w_{1}, w_{2}\right)_{2, j}, \quad j=1,0,-1,
$$

where $y_{1}, y_{2} \in Y_{1, j}, w_{1}, w_{2} \in Y_{2, j}$, and correspondent norms.
Let $A:=\left(A_{1}, A_{2}\right): Y_{1} \rightarrow Y_{-1}, B:=\left(B_{1}, B_{2}\right): \bar{\Xi}_{1} \times \bar{\Xi}_{2} \rightarrow Y_{-1}$ and $C:=\left(C_{1}, C_{2}\right): Y_{1} \rightarrow Z_{1} \times Z_{2}$ be linear bounded operators, $\mathrm{B}:=\left(I, \mathbb{B}_{2}\right): Y_{1} \rightarrow Y_{2}$ be a nonlinear operator and $\phi(\cdot, \cdot):=\left(g_{1}(\cdot)+g_{2}(\cdot, \cdot), \phi_{2}(\cdot, \cdot)\right): Z_{1} \times Z_{2} \rightarrow \bar{\Xi}_{1} \times \bar{Z}_{2}$ be a nonlinear function.
Then system (5) - (7) can be transformed into

$$
\begin{align*}
& \frac{d}{d t} \mathbf{B}(y)=A y+B \phi(z), z=C y, \tag{8}\\
& y(0)=y_{0}, \tag{9}
\end{align*}
$$

where $y=\left(y_{1}, y_{2}\right), z=\left(z_{1}, z_{2}\right), y_{0}=\left(y_{01}, y_{02}\right)$.

3 Doubly-nonlinear evolutionary system

Let $-\infty \leq T_{1}<T_{2} \leq+\infty$ be two arbitrary numbers. Let us define in $L^{2}\left(T_{1}, T_{2} ; Y_{j}\right)$ the norm $j=1,0,-1$

$$
\|y\|_{2, j}:=\left(\int_{T_{1}}^{T_{2}}\|y(t)\|_{j}^{2} d t\right)^{1 / 2}
$$

Let $\mathcal{W}\left(T_{1}, T_{2} ; Y_{1}, Y_{-1}\right)$ be the space of functions y such that $y \in L^{2}\left(T_{1}, T_{2} ; Y_{1}\right), \dot{y} \in L^{2}\left(T_{1}, T_{2} ; Y_{-1}\right)$ with the norm

$$
\|y\|_{\mathcal{W}\left(T_{1}, T_{2} ; Y_{1}, Y_{-1}\right)}:=\left(\|y\|_{2,1}^{2}+\|\dot{y}\|_{2,-1}^{2}\right)^{1 / 2} .
$$

A solution of (8) - (9) is a function $y \in \mathcal{W}\left(T_{1}, T_{2}, Y_{1}, Y_{-1}\right) \cap C\left(T_{1}, T_{2} ; Y_{0}\right)$ satisfing equation (8) - (9) in variational sence, i. e. for a. e. $t \in\left[T_{1}, T_{2}\right]$ the following equation is satisfied:

$$
\begin{aligned}
& \left(\frac{d}{d t} \mathbf{B}(y(t))-A y(t)-B \phi(z(t)), \eta-y(t)\right)_{-1}=0, \\
& \forall \eta \in Y_{1}, z(t)=C y(t), y(0)=y_{0}
\end{aligned}
$$

3 Doubly-nonlinear evolutionary system

Assumptions:
(A3) $Z_{1}=\bar{\Xi}_{1}=\bar{\Xi}_{2}=\mathbb{R}$.
(A4) $\exists \kappa_{1}, \kappa_{2}, \kappa_{1}<\kappa_{2}: \tilde{\phi}_{1}\left(z_{1}, t\right):=g_{1}\left(z_{1}\right)+g_{2}\left(z_{1}, z_{2}(t)\right)$, where $z_{2}(t)=C_{2} y_{2}(t)$ and $y_{2}(t)$ is an arbitrary solution of $(5)-(7)$ such that the following condition is satisfied

$$
\kappa_{1} z_{1}^{2} \leq \tilde{\phi}_{1}\left(z_{1}, t\right) z_{1} \leq \kappa_{2} z_{1}^{2}, \forall z_{1} \in \mathbb{R}, t \geq 0
$$

(A5) $\exists \kappa_{3}>0:\left(\mathbb{B}_{2}\left(y_{2}\right), A_{2} y_{2}\right) \leq-\kappa_{3}\left\|y_{2}\right\|_{2,1}^{2}, \forall y_{2} \in Y_{2,1}$.
(A6) $\exists \kappa_{4}>0$ such that for $\tilde{\phi}_{2}\left(t, z_{2}\right)=\phi_{2}\left(z_{1}(t), z_{2}\right)$ we have
$\left(\mathbb{B}_{2}\left(y_{2}\right), B_{2} \tilde{\phi}_{2}\left(t, y_{2}\right)\right) \leq \kappa_{4}\left\|y_{2}\right\|_{2,1}^{2}, \forall y_{2} \in Y_{2,1}, t \geq 0$.
(A7) System (5) - (7) has a global weak solution.

3 Doubly-nonlinear evolutionary system

(A8.1) The operator A_{1} in system (5) is regular, i. e., for any $T>0, y_{10} \in Y_{1,1}, \tilde{y}_{1} T \in Y_{1,1}, f_{1} \in L^{2}\left(0, T ; Y_{1,0}\right)$ the solutions of the direct problem $\frac{d}{d t} y_{1}=A_{1} y_{1}+f_{1}(t), y_{1}(0)=y_{10}$ and the dual problem $\frac{d}{d t} \tilde{y}_{1}=-A_{1}^{*} \tilde{y}_{1}+f_{1}(t), \tilde{y}_{1}(T)=\tilde{y}_{1} T$ are strongly continuous in the norm of $Y_{1,1}$.
(A8.2) The pair $\left(A_{1}, B_{1}\right)$ in system (5) is L^{2}-controllable, i. e., for any $y_{10} \in Y_{1,0}$ there exists a control $\xi_{1} \in L^{2}\left(0, T ; Z_{1}\right)$ such that the problem $\frac{d}{d t} y_{1}=A_{1} y_{1}+B_{1} \xi_{1}, y_{1}(0)=y_{10}$ has a solution y_{1} for any $T>0$.
(A8.3) For the transfer function $\chi(s)=C_{1}\left(A_{1}-s / Y_{1,1}\right)^{-1} B_{1}$ and the Hermitian form:

$$
\mathcal{F}\left(\xi_{1}, z_{1}\right):=\operatorname{Re}\left(\xi_{1}-\kappa_{1} z_{1}\right)^{*}\left(\kappa_{2} z_{1}-\xi_{1}\right), \xi_{1} \in \mathbb{C}, z_{1} \in \mathbb{C}
$$

the following frequency domain condition holds

$$
\operatorname{Re}\left(\kappa_{1} \chi(i \omega)+\Xi_{1}\right)^{*}\left(\kappa_{2} \chi(i \omega)+\varliminf_{1}\right) \geq 0, \quad \forall \omega \in \mathbb{R} .
$$

3 Doubly-nonlinear evolutionary system

Theorem 2

If conditions (A3) - (A7) and (A8.1) - (A8.3) are satisfied then the solutions of system (5) - (7) are bounded on $(0, \infty)$.

Let us make the following assumptions for system (4):
(A9) $\exists a_{1}>0$ such that:

$$
\begin{equation*}
|b(z)| \leq a_{1}|z|, \quad \forall z \in \mathbb{R}, z \neq \widehat{\theta} \tag{10}
\end{equation*}
$$

(A10) $\exists a_{2}>0$ such that:

$$
\begin{equation*}
|\sigma(z)| \leq a_{2}|z|, \quad \forall z \in \mathbb{R} \tag{11}
\end{equation*}
$$

Corollary 3

Under conditions (A9) and (A10) all assumptions of Theorem 2 are satisfied. Hence the solutions of system (4) are bounded.
(Popov, S., R., V., 2014, Popov, S., 2017)

3 Doubly-nonlinear evolutionary system

Consider the microwave heating problem in 1 -space dimension and without phase-change:

$$
\begin{cases}\varepsilon w_{t t}=\frac{1}{\mu} w_{x x}-\sigma(\theta) w_{t}, & (x, t) \in(0,1) \times(0, T), \\ \theta_{t}=\theta_{x x}+\sigma(\theta) w_{t}^{2}, & (x, t) \in(0,1) \times(0, T), \\ w(0, t)=0, w(1, t)=0, & t \in[0, T], \\ \theta(0, t)=\theta(1, t)=0, & t \in[0, T] \\ w(x, 0)=w_{0}(x), w_{t}(x, 0)=w_{1}(x), & x \in(0,1), \tag{12}\\ \theta(x, 0)=\theta_{0}(x), & x \in(0,1) .\end{cases}
$$

Assumptions:

1) \mathcal{A} is the attractor of the dynamical system generated by the approximation problem to (12);
2) $\varepsilon=1, \mu=1$ or $\mu=0.5$;

3 Doubly-nonlinear evolutionary system

1) Estimation of the correlation dimension:

2) Embedding by the Takens-Robinson method:

$$
\begin{array}{ll}
\text { Figure: } \varepsilon=1 \text { and } & \text { Figure: } \varepsilon=1 \text { and } \\
\mu=0.5 & \mu=1
\end{array}
$$

4 Finite-time stability for non-autonomous heating problem

Introduce for $x \in(0,1)$ and $t \in(0, T)$ the functions

$$
\begin{equation*}
f(x, t)=f_{1}(t)(1-x)+f_{2}(t) x \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
W(x, t):=w(x, t)-f(x, t), V(x, t):=W_{t}(x, t)-f_{t}(x, t) \tag{14}
\end{equation*}
$$

Then the problem (19) becomes

$$
\begin{cases}W_{t}=V-f_{t}, & \\ V_{t}=W_{x x}-\sigma(\theta) V+f_{t t}, & (x, t) \in(0,1) \times(0, T), \\ \theta_{t}-\theta_{x x}=\sigma(\theta)\left(W_{t}+f_{t}\right)^{2}, & \theta(0, t)=\theta(1, t)=0, \\ W(0, t)=W(1, t)=0, \quad x \in(0, T), \\ W(x, 0)=W_{0}(x):=w_{0}(x)-f(x, 0), & x \in(0,1), \\ W_{t}(x, 0)=W_{1}(x):=w_{1}(x)-f_{t}(x, 0), & x \in(0,1), \\ \theta(x, 0)=\theta_{0}(x), x \in(0,1) . & \end{cases}
$$

4 Finite-time stability for non-autonomous heating problem

Let us introduce the space $M=H_{0}^{1}(0,1) \times L^{2}(0,1) \times L^{1}(0,1)$ with norm

$$
\begin{equation*}
\|(W, V, \theta)\|_{M}^{2}=\max \left[\left\|w_{x}\right\|_{L^{2}(0,1)}^{2},\|v\|_{L^{2}(0,1)}^{2},\|\theta\|_{L^{1}(0,1)}^{2}\right] . \tag{16}
\end{equation*}
$$

Determine the function $y\left(t, t_{0}, p\right)=(W(\cdot, t), V(\cdot, t), \theta(\cdot, t))$ as a solution of the problem (15) with the norm (16). Then (15) can be formally written as system

$$
\frac{d y}{d t}=A y+B g(V, \theta)+F(t)
$$

where $y=(W, V, \theta), F(t)=\left(-f_{t}, f_{t t}, 0\right)$ and A, B are linear operators. If ($W(x, t), V(x, t), \theta(x, t))$ is a solution of (15) we can write it as

$$
y\left(t, t_{0}, p\right)=(W(\cdot, t), V(\cdot, t), \theta(\cdot, t))
$$

4 Finite-time stability for non-autonomous heating problem

Definition 2

System (15) is called ($\alpha, \beta, t_{0}, T^{\prime}$)-stable, where $0<\alpha \leq \beta, t_{0}>0$ and $T^{\prime} \geq 0$ are nonnegative numbers, if from the inequality $\left\|y\left(t_{0}\right)\right\|_{Y}<\alpha$ it follows that $\|y(t)\|_{Y}<\beta$ for all $t \in\left[t_{0}, t_{0}+T^{\prime}\right)$.
(Weiss, Infante, 1965) - ODE-system. (Chetaev, 1960) - visco-elastic systems.
(A14) Consider the heat equation:

$$
\left\{\begin{array}{l}
\theta_{t}-\theta_{x x}=0, \tag{17}\\
\theta(x, 0)=\theta_{0}(x), \quad x \in(0,1) \\
\theta(0, t)=\theta(1, t)=0, \quad t \in(0, T)
\end{array}\right.
$$

Let c_{D} be the upper bound of $\theta(x, t)$ for $x \in(0,1), t \in(0, T)$, where $\theta(x, t)$ is an arbitrary solution of system (17).
(A15) $|N(t)| \leq c_{N}$ for any $t \in(0, T)$, where
$N(t):=\int_{0}^{t} \sum_{i=1}^{2}\left[f_{i t}+\left|f_{i t t}\right|\right] d \tau$. Here $f_{i t}$ and $f_{i t t}$ are defined as

$$
\begin{equation*}
f_{i t}=\frac{d f_{i}}{d t}, \quad f_{i t t}=\frac{d^{2} f_{i}}{d t^{2}} \tag{18}
\end{equation*}
$$

Consider the one-dimensional microwave heating problem with non-autonomous boundary conditions:

$$
\begin{cases}w_{t t}-w_{x x}+\sigma(\theta) w_{t}=0, & (x, t) \in(0,1) \times(0, T), \\ \theta_{t}-\theta_{x x}=\sigma(\theta) w_{t}^{2}, & (x, t) \in(0,1) \times(0, T), \\ w(0, t)=f_{1}(t), w(1, t)=f_{2}(t), & t \in(0, T), \\ \theta(0, t)=\theta(1, t)=0, & t \in(0, T), \\ w(x, 0)=w_{0}(x), w_{t}(x, 0)=w_{1}(x), & x \in(0,1), \\ \theta(x, 0)=\theta_{0}(x), & x \in(0,1),\end{cases}
$$

where $\theta(x, t)$ is the temperature, $w(x, t)$ is the variable, determining the electric field, f_{1} and f_{2} are given functions.

4 Finite-time stability for non-autonomous heating problem

Let the following conditions are satisfied:
(A11) There exists constants σ_{0} and σ_{1}, such that
$0<\sigma_{0} \leq \sigma(\theta) \leq \sigma_{1}(1+\theta), \quad \forall \theta>0 ;$
(A12) σ is locally Lipschitz on $(0,+\infty)$,
$(\mathrm{A} 13) f_{1}, f_{2} \in C^{2}(\mathbb{R}), \quad f_{1}(0)=0, f_{2}(0)=0, \quad w_{t}(x, 0), \theta_{0}(x) \in L^{2}(0,1)$.
Denote $v:=w_{t}$.
Theorem 4
There exists a global weak solution ($w(x, t), \theta(x, t)$) of the problem (19) such that $w, v \in C\left([0, T] ; L^{2}(0,1)\right) ; \theta \in L^{2}\left(0, T ; H^{1}(0,1)\right)$.
(Yin, 1998)

4 Finite-time stability for non-autonomous heating problem

Theorem 5

Consider problem (15) and let the conditions (A11)-(A15) be satisfied. Then system (15) is ($\alpha, \beta, 0, T$)-stable, if for the given parameters $\alpha>0, t_{0}=0, T>0$ the parameter β is calculated by

$$
\begin{gather*}
\beta=\max \left[\beta_{1}, \beta_{2}\right], \quad \text { where } \tag{20}\\
\beta_{1}=4 c_{D} \max \left[\sigma_{1}, \frac{1}{\sigma_{0}}\right] c_{N}+2 c_{D} \max \left[\sigma_{1}, \frac{1}{\sigma_{0}}\right] c(f, T)+ \tag{21}\\
c_{D} \alpha+4 c_{D}\left(c(f, T)+c_{D} \alpha\right)\left(c_{N}+c_{D} \alpha\right) c(f, T), \\
\beta_{2}=\sqrt{\max \left[\sigma_{1}, \frac{1}{\sigma_{0}}\right] c_{N}+c(\delta) \sigma_{1}\left(c_{N}+c_{D} \alpha\right) c(f, T) .} \tag{22}
\end{gather*}
$$

where $f(t):=\sum_{i=1}^{2}\left|f_{i t}\right|, c(f, T)=e^{\int_{0}^{T} f(\tau) d \tau} \int_{0}^{T} f(\tau) e^{-\int_{0}^{\tau} f(\eta) d \eta} d \tau$.
(Skopinov, S., 2017)

5 Finite-time stability for processes

Introduce the family of mappings

$$
\begin{aligned}
& \varphi^{(\cdot)}(\cdot, \cdot): \mathbb{R}_{+} \times \mathbb{R} \times M \rightarrow M \quad \text { by } \\
& \varphi^{t}\left(t_{0}, p\right)=y\left(t+t_{0}, t_{0}, p\right)
\end{aligned}
$$

for any $t \in \mathbb{R}_{+}, t_{0} \in \mathbb{R}_{+}, p \in M$, where M is the Banach space $M=H_{0}^{1}(0,1) \times L^{2}(0,1) \times L^{2}(0,1)$ with the norm

$$
\|(W, V, \theta)\|_{M}^{2}=\|W\|_{H_{0}^{1}}^{2}+\|V\|_{L^{2}}^{2}+\|\theta\|_{L^{2}}^{2} .
$$

The mapping $\varphi^{(\cdot)}(\cdot, \cdot): \mathbb{R}_{+} \times \mathbb{R} \times M \rightarrow M$ is said to be a process if the following conditions are satisfied:

1) $\varphi^{0}(s, \cdot)=I_{M}$ for all $s \in \mathbb{R}_{+}$;
2) $\varphi^{t_{1}+t_{2}}(s, p)=\varphi^{t_{1}}\left(s+t_{2}, \varphi^{t_{2}}(s, p)\right)$ for all $(s, p) \in \mathbb{R} \times M$ and $t_{1}, t_{2} \in \mathbb{R}_{+}$.

5 Finite-time stability for processes

Examples of processes are dynamical systems for which $\varphi^{t}(s, \cdot)=\varphi^{t}(\cdot)$ for $s \in \mathbb{R}_{+}$and $t \in \mathbb{R}$.
Suppose $\left(\tau, u_{\tau}\right) \in \mathbb{R} \times M$. The mapping $\mathbb{R}_{+} \ni t \mapsto u(t) \in M$ is said to be a motion of the process $\left(\left\{\varphi^{t}(s, \cdot)\right\}_{t \in \mathbb{R}_{+}},\left(M, \rho_{M}\right)\right)$ through u_{τ} for $t=0$ if $u(t)=\varphi^{t}(\tau, u(\tau)), \forall t>0$, and $u(0)=u_{\tau}$.
Assume that $0<\alpha \leq \beta$ and $T^{\prime}>0, t_{0} \geqslant 0$, are numbers and $p \in M$ is a fixed point. The process $\left(\left\{\varphi^{t}(s, \cdot)\right\}_{t \in \mathbb{R}_{+}},(M, \rho)\right)$ is said to be
$\left(\alpha, \beta, t_{0}, T^{\prime}, p\right)$ stable if the inequality $\rho_{M}\left(\varphi^{0}\left(\tau, u_{\tau}\right), p\right)<\alpha$ for an arbitrary pair $\left(\tau, u_{\tau}\right) \in \mathbb{R}_{+} \times M$ implies that $\rho_{M}\left(\varphi^{t}\left(\tau, u_{\tau}\right), p\right)<\beta$ for all $t \in\left[t_{0}, t_{0}+T^{\prime}\right)$.
Suppose $\left(\left\{\varphi^{t}(s, \cdot)\right\}_{t \in \mathbb{R}_{+}},\left(M, \rho_{M}\right)\right)$ is a process. The map $\phi: \mathbb{R} \times M \rightarrow \mathbb{R}$ $s \in \mathbb{R}$
is said to be a Lyapunov functional for this process if the following conditions are satisfied:

5 Finite-time stability for processes

(A16) The family of maps $\phi(t, \cdot): M \rightarrow \mathbb{R}$ is continuous;
(A17) For arbitrary $t \in \mathbb{R}$ and $u \in M$ there exists the limit

$$
\dot{\phi}(t, u):=\lim _{s \rightarrow 0+} \sup \frac{1}{s}\left[\phi\left(t+s, \varphi^{s}(t, u)\right)-\phi(t, u)\right] .
$$

Theorem 6

Suppose that $\left(\left\{\varphi^{t}(s, \cdot)\right\}_{t \in \mathbb{R}_{+}}\right.$is a process, $I:=\left[t_{0}, t_{0}+T^{\prime}\right]$ is a time interval, $0<\alpha \leq \beta, T^{\prime}>0, t_{0}>\mathbb{R}$ are positive numbers, $u_{\tau} \in M, p \in M$ are some points and there exist a Lyapunov functional $\phi: I \times M \rightarrow \mathbb{R}$ for the process and an integrable function $g: I \rightarrow \mathbb{R}$ such that:
(i) $\dot{\phi}(t, u(t))<g(t)$ for arbitrary $t \in I$ and arbitrary functions $u(\cdot) \in C\left(t_{0}, t_{0}+T^{\prime}, M\right)$ such that $\alpha \leq \rho_{M}(u(t), p) \leq \beta$ for all $t \in I$;
(ii) $\int_{s}^{t} g(\tau) d \tau \leq \min _{u \in M: \rho_{M}(u, p)=\beta} \phi(t, u)-\max _{u \in M: \rho_{M}(u, p)=\alpha} \phi(s, u)$ for all $s, t \in I, s<t$. Then the process $\left(\left\{\varphi^{t}(s, \cdot)\right\}_{t \in \mathbb{R}_{+}},\left(M, \rho_{M}\right)\right)$ is ($\left.\alpha, \beta, t_{0}, T^{\prime}, p\right)$-stable.

6 Numerical results for the one-dimensional heating problem

Consider problem (15). Initial and boundary conditions:

$$
\begin{align*}
& \sigma(\theta)=0.2(1+\theta), \theta \in \mathbb{R}, w_{0}(x)=0, w_{1}(x)=0, \theta_{0}(x)=0, x \in(0,1), \\
& f_{1}(t)=f_{2}(t)=2 \sin 2 t, t \in \mathbb{R} \tag{23}
\end{align*}
$$

Figure: 1 The solution component $w(x, t)$

Figure: 2 The solution component $\theta(x, t)$

Suppose (M, ρ_{M}) is a complete metric space. Let $\varphi^{t}: M \rightarrow 2^{M}, \forall t \in \mathbb{R}_{+}$, be a family of maps. The pair $\left(\left\{\varphi^{t}\right\}_{t \in \mathbb{R}_{+}},\left(M, \rho_{M}\right)\right)$ is said to be a multivalued dynamical system (MDS) if the following conditions are satisfied:

1) $\varphi^{0}(p)=\{p\}, \quad \forall p \in M$,
2) $\varphi^{t_{1}+t_{2}}(p) \subset \varphi^{t_{1}}\left(\varphi^{t_{2}}(p)\right), \quad \forall t_{1}, t_{2} \in \mathbb{R}_{+}, \forall p \in M$.

The MDS $\left(\left\{\varphi^{t}\right\}_{t \in \mathbb{R}_{+}},\left(M, \rho_{M}\right)\right)$ is said to be continuous with respect to the initial conditions if for arbitrary sequences $\left\{t_{n}\right\} \subset \mathbb{R}_{+},\left\{p_{n 0}\right\} \subset M$ such that $t_{n} \rightarrow t, p_{n 0} \rightarrow p_{0}$ as $n \rightarrow \infty$ for some $t \in \mathbb{R}_{+}$and $p_{0} \in M$ there exists for any $n \in \mathbb{N}$ a $\tilde{p}_{n} \in M$ satisfying $\tilde{p}_{n} \in \varphi^{t_{n}}\left(p_{n 0}\right)$ and $\tilde{p}_{n} \rightarrow \tilde{p}$ as $n \rightarrow \infty$.

7 Multivalued dynamical systems

A subset $Z \subset M$ is said to be

- attracting if $\operatorname{dist}\left(\varphi^{t}(p), Z\right) \rightarrow 0$ as $t \rightarrow \infty, \quad \forall p \in M$, where $\operatorname{dist}\left(W, W^{\prime}\right)=\inf _{p \in W, q \in W^{\prime}} \rho_{M}(p, q), W, W^{\prime} \subset M$,
- absorbing if $\forall p \in M \exists T \in \mathbb{R}_{+}: \forall t>T, t \in \mathbb{R}_{+}, \varphi^{t}(p) \subset Z$,
- invariant if $\varphi^{t}(Z)=Z, \quad \forall t \in \mathbb{R}_{+}$,
- a global attractor if Z is bounded and closed, invariant and globally attracting.
Let us consider the 3 D heating problem. Introduce the set

$$
\begin{align*}
D & =\left\{(E, H, \theta) \in H_{0}(\operatorname{curl}, \Omega) \times\left(H(\operatorname{curl}, \Omega) \cap H_{0}(\operatorname{div}, \Omega)\right) \times H_{0}^{1}(\Omega) ;\right. \\
\mu H & \left.\in \mathbb{H}_{1}(\Omega)^{\perp} \cap H(\operatorname{div} 0, \Omega)\right\}, \mathbb{H}_{1}(\Omega)=H(\operatorname{curl0}, \Omega) \cap H_{0}(\operatorname{div} 0, \Omega), \tag{24}
\end{align*}
$$

with the norm $\|(E, H, \theta)\|_{D}:=\max \left\{\|E\|_{L^{2}(\Omega)^{3}},\|H\|_{L^{2}(\Omega)^{3}},\|\theta\|_{L^{2}(\Omega)}\right\}$.

Here

$$
\left\{\begin{array}{l}
H(\operatorname{curl}, \Omega)=\left\{v \in L^{2}(\Omega)^{3}: \operatorname{curl} v \in L^{2}(\Omega)^{3}\right\}, \\
H(\operatorname{div}, \Omega)=\left\{v \in L^{2}(\Omega)^{3}: \operatorname{div} v \in L^{2}(\Omega)^{3}\right\}, \\
H_{0}(\operatorname{curl}, \Omega)=\{v \in H(\operatorname{curl}, \Omega): v \times \nu=0, \forall v, \nu \in \partial \Omega\}, \tag{25}\\
H_{0}(\operatorname{div}, \Omega)=\{v \in H(\operatorname{div}, \Omega): v \cdot \nu=0, \forall v, \nu \in \partial \Omega\}, \\
H(\operatorname{div} 0, \Omega)=\left\{v \in L^{2}(\Omega)^{3}: \operatorname{div} v=0\right\}, \\
H_{0}(\operatorname{div} 0, \Omega)=H_{0}(\operatorname{div}, \Omega) \cap H(\operatorname{div} 0, \Omega) .
\end{array}\right.
$$

7 Multivalued dynamical systems

Introduce the map

$$
\begin{equation*}
\varphi: \mathbb{R}_{+} \times D \rightarrow 2^{D} \tag{26}
\end{equation*}
$$

through $\varphi^{t}\left(E_{0}, H_{0}, \theta_{0}\right)=\{(\tilde{E}, \tilde{H}, \tilde{\theta}) \in D: \exists$ solution (E, H, θ) of (1) with initial values E_{0}, H_{0}, θ_{0} and $\left.E(\cdot, t)=\tilde{E}, H(\cdot, t)=\tilde{H}, \theta(\cdot, t)=\tilde{\theta}\right\}$.

Theorem 7
Consider the map (26). Then:

1) (26) defines a MDS;
2) The MDS (26) is continuous with respect to the initial conditions;
3) The MDS (26) has the global attractor $A=\bigcap_{s \geq 0} \bigcup_{t \geq s} \varphi^{t}\left(B_{0}\right)$, where B_{0} is a compact absorbing set for (26).;
(Zyryanov, R., 2017)

Figure: 3 Change of the temperature at the line $x \in(0,1), y=0.5, z=0.5$

Figure: 4 Change of the temperature at a central point inside the cube

References

1) Kalinichenko D.Yu., Reitmann V. and Skopinov S.N. Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion, Discrete and Continuous Dynamical Systems, Supplement, pp. 407-414, 2013
2) Reitmann V. and Skopinov S.N. On a finite time interval stability for the one-dimensional microwave heating problem, Vestnik SPbGU, 1, 2(60), pp. 54-59, 2014
3) Yin H.-M. On Maxwell's equations in an electromagnetic field with the temperature effect, SIAM J. on Mathematical Analysis, 15(4), Vol. 29., pp. 637-651, 1998
4) Weiss L., Infante E.F., On the stability of systems defined over a finite time interval, Proc. Nat. Acad. Sci, 54, pp. 44-48, 1965
5) Chetaev N.G., About some questions, relating to the problem of the stability of unsteady motions, PMM24, 1, pp. 16-19, 1960

References

6) A. Likhtarnikov and V. Yakubovich, The frequency theorem for equations of evolutionary type, Siberian Math. J., 17(5), pp.790-803, 1976
7) Manoranjan V. S., Showalter R., Yin H.-M. On two-phase Stefan problem arising from a microwave heating process, Discrete and Cont. Dyn. Sys. Series A., 15(4), pp. 1155-1168, 2006
8) Popov, S. A., Reitmann, V., Frequency domain conditions for finite dimensional projectors and determining observations for the set of amenable solutions, Discrete Contin. Dyn. Syst., 34(1), pp. 249-267, 2014
9) Popov, S. A, Localization of invariant sets and attractors of evolutionary systems arising from one- and two-phase heating problems and their numerical reconstruction by the Takens method, Autoreferat (to appear), 2017

References

10) Zyryanov, D. A., Reitmann, V., Attractors in multivalued dynamical systems for the two-phase heating problem, Electr. J. Differential Equations and Control Processes (to appear)
11) Skopinov, S. N, Lyapunov function method for analysis of the finite time stability of the multivalued heating processes, Autoreferat (to appear), 2017
