Stability and bifurcation investigation of discrete-time nonlinear systems by realization theory methods

Y. Abdalova and V. Reitmann

Saint-Petersburg State University
Department of Mathematics and Mechanics
St. Petersburg, Russia

Equadiff 2015
July 06-10, 2015, Lyon, France

1 Realization of a Volterra integral equation

Consider the nonlinear Volterra integral equation

$$
\begin{equation*}
\sigma(t)=h(t)+\int_{0}^{t} G(t-s) \varphi(\sigma(s), s) \mathrm{d} s \tag{1}
\end{equation*}
$$

with $\sigma: \mathbb{R}_{+} \rightarrow U\left(\mathbb{R}^{n}\right.$, Hilbert space $)$ as output, $h: \mathbb{R}_{+} \rightarrow U$ as perturbation,
$u(\cdot):=\varphi(\sigma(\cdot), \cdot): \mathbb{R}_{+} \rightarrow U$ as control,
$\forall t \geq 0: G(t) \in \mathcal{L}(\mathcal{U}, \mathcal{U})$ as kernel and
$\varphi: U \times \mathbb{R}_{+} \rightarrow U$ as nonlinearity .
(A1) $t \mapsto G(t)$ is twice piecewise-differentiable and

$$
\exists c>0, \rho_{0}>0, \lambda>0:\|G(t)\|_{\mathcal{L}(\mathcal{U}, \mathcal{U})} \leq c e^{-\rho_{0} t}, \quad \forall t \geq 0
$$

$$
\int_{0}^{\infty}\left(\|\dot{G}(t)\|_{\mathcal{L}(\mathcal{U}, \mathcal{U})}^{2}+\|\ddot{G}(t)\|_{\mathcal{L}(\mathcal{U}, \mathcal{U})}^{2}\right) e^{2 \lambda t} \mathrm{~d} t<\infty
$$

1 Realization of a Volterra integral equation

(A2) $\exists P=P^{*}, Q, R \in \mathcal{L}(\mathcal{U}, \mathcal{U})$,

$$
\begin{equation*}
(\sigma(t), P \sigma(t)) u+2(\sigma(t), Q \varphi(\sigma(t), t)) u+(\varphi(\sigma(t), t), R \varphi(\sigma(t), t)) u \leq 0 \tag{2}
\end{equation*}
$$

$\forall \sigma(\cdot), \varphi(\sigma(\cdot), \cdot), \sigma(\cdot)$ continuous solution of (1), $\forall t \geq 0$, (Quadratic constraints)

$$
\begin{gathered}
L_{\rho}^{2}\left(\mathbb{R}_{+} ; U\right):=\left\{f \in L_{\text {loc }}^{2}\left(\mathbb{R}_{+} ; U\right): \int_{0}^{\infty}|f(t)|_{U}^{2} e^{2 \rho t} \mathrm{~d} t<\infty\right\} \\
\text { is a weighted } L^{2} \text {-space } \\
W_{\rho}^{1,2}\left(\mathbb{R}_{+} ; U\right):=\left\{f \in L_{\rho}^{2}\left(\mathbb{R}_{+} ; U\right): \dot{f} \in L_{\rho}^{2}\left(\mathbb{R}_{+} ; U\right)\right\}
\end{gathered}
$$

is a weighted Sobolev space.
(A3) The linear part of (1) is ρ-stable, ie.

$$
\begin{aligned}
& \exists \rho \geq 0 \forall u \in L^{2}\left(\mathbb{R}_{+} ; U\right) \mapsto \sigma(\cdot) \in W_{\rho}^{1,2}\left(\mathbb{R}_{+} ; U\right) \\
& \sigma(t)=\int_{0}^{t} G(t-s) u(s) \mathrm{d} s \text { is a bounded operator. }
\end{aligned}
$$

1 Realization of a Volterra integral equation

Goal: Find Hilbert spaces $Z_{1} \subset Z_{0} \subset Z_{-1}$ (Rigged Hilbert space structure) and linear bounded operators

$$
A: Z_{1} \rightarrow Z_{-1}, B: U \rightarrow Z_{-1}, C: Z_{0} \rightarrow U
$$

such that the absolute stability behaviour of (1) coincides with the absolute stability behaviour of the non-autonomous dynamical system

$$
\begin{equation*}
\dot{z}=A z+B u(t), \quad \sigma(t)=C z(t), \quad u(t)=\varphi(\sigma(t), t), \tag{3}
\end{equation*}
$$

and the following conditions are satisfied:
(i) $z\left(0, z_{0}, u\right)=0 \quad \forall z_{0} \in Z_{0}, \quad \forall u \in L_{l o c}^{2}(0, \infty ; U), \quad$ (Initial condition);
(ii) $u(t)=0, \quad \forall t \leq T \Rightarrow z(t, 0, u)=0, \quad \sigma(t, 0, u)=0, \quad \forall t \leq T$,
(Causality);
(iii)

$$
\begin{aligned}
& z\left(t+s, z_{0}, u\right)=z\left(t, z\left(s, z_{0}, u\right), \tau^{s} u\right), \\
& \sigma\left(t+s, z_{0}, u\right)=\sigma\left(t, z\left(s, z_{0}, u\right), \tau^{s} u\right) \\
& \forall z_{0} \in Z_{0}, \forall u \in L_{l o c}^{2}(0, \infty ; U), \forall t, s \geq 0, \\
& \text { (Time-invariance or cocycle property) }
\end{aligned}
$$

1 Realization of a Volterra integral equation

with $\tau^{s} u(t):=\left\{\begin{array}{cl}u(t+s) & \text { for } t+s \geq 0, \\ 0 & \text { for } t+s<0\end{array} \quad\right.$ as shift semi-group.
Example 1

$$
\begin{gathered}
\dot{x}=d(y-x), \quad \dot{y}=r x-y-x z, \quad \dot{z}=-b z+x y \\
d>0, \quad r>0, \quad b>0 \quad \text { Lorenz equation }
\end{gathered}
$$

Nonlinearities:
$\varphi_{1}(x, y, z)=x z, \quad \varphi_{2}(x, y, z)=x y, \quad \varphi=\left(\varphi_{1}, \varphi_{2}\right), \quad \sigma=(x, y, z) \in \mathbb{R}^{3}$
Quadratic constraints: $F(\varphi, \sigma):=\varphi_{1} y-\varphi_{2} z=x y z-x y z \equiv 0 \quad \hat{=}(2)$
Transfer functions:

$$
\left.\begin{array}{rl}
\tilde{y} & =-\hat{G}_{1}(i \omega) \tilde{\varphi}_{1}, \quad \omega \in \mathbb{R} \\
\tilde{z} & =-\hat{G}_{2}(i \omega) \tilde{\varphi}_{2} \\
\hat{G}_{1}(p) & =\frac{p+d}{p^{2}+p(d+1)+d(1-r)} \\
\hat{G}_{2}(p) & =-\frac{1}{p+b}
\end{array}\right\} \Rightarrow G(t)
$$

1 Realization of a Volterra integral equation

Example 1 (continued)

Frequency domain condition (5) is satisfied for $0<r<1$ Associated Boltzmann equation in $W_{\rho}^{1,2}\left(\mathbb{R}_{+} ; \mathbb{R}^{3}\right)$

We call this imbedding of (1) into a time-invariant control system with the same absolute stability behaviour.

Theorem 1 (Kalman [1969], Helton [1976], Salamon [1989])

Suppose that (1) is linear and the input / output process given by (1) is ρ-stable. Then there exists an imbedding of (1) into a system (3) with the same absolute stability behaviour by a Boltzmann-type transport equation, i.e. by a system (3)

$$
\text { with } \quad Z_{0}:=W_{\rho}^{1,2}\left(\mathbb{R}_{+} ; U\right), 0<\rho<\rho_{0}
$$

1 Realization of a Volterra integral equation

Theorem 1 (continued)

$$
\begin{array}{r}
Z_{1}:=D(A)=\left\{\xi: \xi(s) \in W_{\rho}^{1,2}\left(\mathbb{R}_{+} ; U\right), \int_{0}^{\infty} e^{2 \rho s}|\ddot{\xi}(s)|^{2} \mathrm{~d} s<\infty\right\}, \\
(A \xi)(s):=\mathrm{d} s \frac{\partial \xi(s)}{\partial s} \text { transport or impulse operator, (4) } \\
(B \eta)(s):=G(s) \eta, \eta \in U\left(=\mathbb{R}^{n}\right), C z(s):=z(0), \forall z(s) \in W_{\rho}^{1,2}\left(\mathbb{R}_{+} ; U\right) .
\end{array}
$$

Example 2
Consider

$$
\begin{aligned}
& \dot{y}=A y+B \varphi(\sigma(t), t), \sigma(t)=C y(t), \\
& A-n \times n, B-n \times 1, C-1 \times n \text { matrices, } \\
& \varphi: \mathbb{R} \times \mathbb{R}_{+} \rightarrow \mathbb{R}, \\
& G(t):=C e^{A t} B, \quad h(t)=C e^{A t} y_{0}, \\
& \sigma(t)=h(t)+\int_{0}^{t} G(t-s) \varphi(\sigma(s), s) \mathrm{d} s .
\end{aligned}
$$

1 Realization of a Volterra integral equation

Example 2 (continued)

The nonlinear Boltzmann transport equation from scattering theory

$$
\mathrm{d} s \frac{\partial \sigma}{\partial t}=\mathrm{d} s \frac{\partial \sigma}{\partial x}+\int_{0}^{x} G(x-s) \varphi(\sigma(s, x)) \mathrm{d} s
$$

is a first order integro-differential equation with boundary and initial conditions

$$
\sigma(t, 0)=0, \quad \sigma(0, x)=\sigma_{0}(x)
$$

Theorem 2 (Generalized Brusin's theorem; Reitmann [2011])

Consider the nonlinear Volterra integral equation (1) under the assumptions (A1) - (A3). Let $\hat{G}(\lambda):=\int_{0}^{\infty} e^{-\lambda t} G(t) \mathrm{d} t$ be the transfer operator of the kernel. Assume that the class of nonlinearities described by (A2) contains

1 Realization of a Volterra integral equation

Theorem 2 (continued)

at least one linear function $\varphi(\sigma, t)=K \sigma$ with $K \in \mathcal{L}(\mathcal{U}, \mathcal{U})$ such that the operator $(I-\hat{G}(\lambda) K)^{-1}$ has a finite number of singularities in the strip $0<\varepsilon_{1} \leq \operatorname{Re} \lambda \leq \varepsilon_{2}$. Suppose that the frequency-domain condition

$$
\begin{equation*}
\hat{G}^{*}(i \omega) P \hat{G}(i \omega)+2 \operatorname{Re}\left(Q^{*} \hat{G}(i \omega)\right)+R>0 \quad \forall \omega \in \mathbb{R} \tag{5}
\end{equation*}
$$

is satisfied. Then the nonlinear integral equation (1) can be imbedded into a non-autonomous dynamical system (3) with the same absolute stability behaviour realized with transport operator (4), i.e. there exists a linear bounded operator $M=M^{*}: W_{\rho}^{1,2}\left(\mathbb{R}_{+} ; U\right) \rightarrow W_{\rho}^{1,2}\left(\mathbb{R}_{+} ; U\right)$ with the following properties.

1) If $\sigma(t) \equiv \sigma(t, h)$ with $h \in W_{\rho}^{1,2}\left(\mathbb{R}_{+} ; U\right)$ is a continuous solution of the integral equation (1) then the solution $z(t) \equiv z(t, h)$ of (3) with $z(0, h)=h$ exists and there is a positive $\delta>0$ such that

1 Realization of a Volterra integral equation

Theorem 2 (continued)

$\int_{t_{1}}^{t_{2}}\left(|\varphi(\sigma(t), t)|_{U}^{2}+\|z(t)\|_{W_{\rho}^{1,2}}^{2}\right) d t \leq\left.\delta(M z(t), z(t))\right|_{t_{1}} ^{t_{2}} \quad \forall 0 \leq t_{1}<t_{2}$.
2) Suppose $(\sigma(\cdot), h(\cdot))$ satisfies (1) and $(h(\cdot), M h(\cdot))<0$. Then
$\sigma(\cdot) \in L^{2}\left(\mathbb{R}_{+} ; U\right)$, i.e. it is stable. If $(h(\cdot), M h(\cdot))>0$ then $\sigma(\cdot)$ is unstable, i.e. there exists a number $\beta>0$ such that

$$
\lim _{T \rightarrow \infty} e^{-\beta T} \int_{0}^{T}|\varphi(\sigma(t), t)|_{U}^{2} \mathrm{~d} t=\infty
$$

3) M is the operator solution of a linear integral equation.

Remark 1

The (algebraic) dimension d of the cone $\left\{h \in W_{\rho}^{1,2}\left(\mathbb{R}_{+} ; U\right):(M h, h)>0\right\}$ is finite and coincides with the topological dimension of an orbit closure $\mathfrak{M}:=c l\{z(t), t \geq 0\}$ of system (3). Thus d real coordinates are sufficient to describe by one-to-one map the points in \mathfrak{M}.

2 Realization of a time-series

Consider the nonlinear system

$$
\begin{aligned}
& \sigma(k)=h(k)+\sum_{j=0}^{k-1} G(k-j-1) \varphi(\sigma(j), j), \\
& k=1,2, \ldots, \sigma(0)=\sigma_{0},\{\sigma(k)\}_{k=1}^{\infty} \quad \text { a time-series generated by (6) }, \\
& h: \mathbb{N}_{0} \rightarrow U, U: \text { Hilbert space, } \mathbb{R}^{n}, \\
& G(j) \in \mathcal{L}(\mathcal{U}, \mathcal{U}), \\
& \varphi: U \times \mathbb{N}_{0} \rightarrow U, \\
& \hat{G}(p):=\sum_{k=0}^{\infty} G(k) p^{-k} \quad z \text {-transform of } G, \\
& T(p):=\hat{G}(1 / p)=\hat{G}_{0}+\hat{G}_{1} p+\hat{G}_{2} p^{2}+\ldots .
\end{aligned}
$$

2 Realization of a time-series

(Ã1) $\exists c>0 \quad \exists \rho_{0}>1:\|G(k)\|_{\mathcal{L}(\mathcal{U}, \mathcal{U})} \leq c \rho_{0}^{-k}, k=1,2, \ldots$ [2ex]
(Ã2) $\exists P=P^{*}, Q, R \in \mathcal{L}(\mathcal{U}, \mathcal{U})$ s.t.
$(\sigma(k), P \sigma(k)) u+2(\sigma(k), Q \varphi(\sigma(k), k)) u$
$+(\varphi(\sigma(k), k), R \varphi(\sigma(k), k)) u \leq 0$
$\forall\{\sigma(k)\}$ solution of $(6), \quad\{\varphi(\sigma(k), k)\}, k=1,2, \ldots$,
Let $\ell_{\rho}^{2}(1, \infty ; U)$ with $0<\rho<\infty$ be the set of sequences
$u=\left(u_{1}, u_{2}, \ldots\right)$ with $u_{k} \in U$ for which $\left\{\rho^{-k} u_{k}\right\}$ belongs to $\ell^{2}(1, \infty ; U)$,
i.e. $\sum_{k=1}^{\infty} \rho^{-2 k}\left|u_{k}\right|_{U}^{2}<\infty$.
($\tilde{\mathrm{A}} 3)$ The linear part of (6) is ρ-stable, i.e. $\exists \rho>0 \quad \forall u \in \ell^{2}(1, \infty ; U)$ the sequence $\{\sigma(k)\}, \sigma(k):=\sum_{j=0}^{k-1} G(k-j-1) u(j)$ belongs to $\ell_{\rho}^{2}(1, \infty ; U)$.

2 Realization of a time-series

Realization procedure:

1) Introduce the backward shift $\tau: \ell_{\rho}^{2}(1, \infty ; U) \rightarrow \ell_{\rho}^{2}(1, \infty ; U)$ by $\tau\left(u_{1}, u_{2}, \ldots\right)=\left(u_{2}, u_{3}, \ldots\right), \forall u=\left(u_{1}, u_{2}, \ldots\right) \in \ell_{\rho}^{2}(1, \infty ; U)$.
Define $A:=\tau$
2) Define $B: U \rightarrow \ell_{\rho}^{2}(1, \infty ; U)$ by

$$
B u:=\left(\hat{G}_{1} u, \hat{G}_{2} u, \ldots\right), \forall u \in U
$$

and $C: \ell_{\rho}^{2}(1, \infty ; U) \rightarrow U$ by

$$
C\left(u_{1}, u_{2}, \ldots\right):=u_{1}, \forall\left(u_{1}, u_{2}, \ldots\right) \in \ell_{\rho}^{2}(1, \infty ; U)
$$

3) $z(k+1)=A z(k)+B u(k)$,

$$
\begin{align*}
\sigma(k) & =C z(k), z(0)=z_{0} \in \ell_{\rho}^{2}(1, \infty ; U) \\
u(k) & =\varphi(\sigma(k), k), k=0,1,2, \ldots \tag{7}
\end{align*}
$$

(7) is called discrete-time Boltzmann-type transport equation associated with (6).

2 Realization of a time-series

Example 3

$$
\begin{aligned}
& \sigma_{n+2}+\sigma_{n+1}+\varphi\left(\sigma_{n}, n\right)=0, \quad n=0,1,2, \ldots, \\
& \sigma(0)=\sigma_{0}, \quad \sigma(1)=\sigma_{1} .
\end{aligned}
$$

z-transform:

$$
p^{2} \tilde{\sigma}+p \tilde{\sigma}=-\tilde{\varphi},
$$

$$
\hat{G}(p)=\frac{1}{p^{2}+p},
$$

$$
\begin{aligned}
& \hat{G}\left(\frac{1}{p}\right)=\frac{1}{\frac{1}{p^{2}}+\frac{1}{p}}=\frac{p^{2}}{1+p}=p-1+\frac{1}{1+p}=p-1+\sum_{m=0}^{\infty}(-1)^{m} p^{m} \\
& =p^{2}-p^{3}+p^{4}-\cdots . \\
& \hat{G}_{m}=\left\{\begin{array}{cc}
0, & m=0,1, \\
(-1)^{m}, & m=2,3, \ldots
\end{array}\right. \\
& \quad\left(z_{1}(k+1), z_{2}(k+2), \ldots\right) \\
& \quad=\tau\left(z_{1}(k), z_{2}(k), \ldots\right)+\left(0, \varphi\left(\sigma_{k}, k\right),-\varphi\left(\sigma_{k}, k\right), \ldots\right),
\end{aligned}
$$

2 Realization of a time-series

Example 3 (continued)

$$
\begin{aligned}
& k=0,1,2, \ldots, \quad \sigma_{k}=z_{1}(k) \\
& z_{m}(k+1)=z_{m+1}(k)+(-1)^{m} \varphi\left(z_{1}(k), k\right), m, k \in \mathbb{N}_{0}
\end{aligned}
$$

Space- and time-discrete version of the Ginsburg-Landau equation in $\ell_{\rho}^{2}(1, \infty ; U)$:

$$
\begin{aligned}
& u_{j}(n+1)=u_{j}(n)-(1-i \beta) u_{j}(n)\left|u_{j}(n)\right|^{2} \\
+ & \varkappa\left(u_{j-1}(n)-2 u_{j}(n)+u_{j+1}(n)\right) u_{j}(n) \in \mathbb{C}, n, j \in \mathbb{Z} .
\end{aligned}
$$

Dynamical objects of the lattice model associated to a time-series:

- finite-dimensional attractors
- hyperbolicity
- travelling waves $u_{j}(n)=\Psi\left(l_{j}+m n\right)$
- spatial structures

2 Realization of a time-series

Theorem 3

Consider the iteration (6) under the assumptions ($\tilde{\mathrm{A}} 1$) - (A 3). Let $\hat{G}(p):=\sum_{k=0}^{\infty} G(k) p^{-k}$ be the z-transform of G. Assume that the class of nonlinearities described by ($\tilde{\mathrm{A}} 2$) contains at least one linear function $\varphi(\sigma, t)=K \sigma$ with $K \in \mathcal{L}(\mathcal{U}, \mathcal{U})$ such that the operator $(I-\hat{G}(p) K)^{-1}$ has a finite number of singularities in the ring

$$
1<\varepsilon_{1} \leq|p| \leq \varepsilon_{2} .
$$

Suppose that the frequency-domain condition

$$
\hat{G}^{*}(p) P \hat{G}^{*}(p)+2 \operatorname{Re}\left(Q^{*} \hat{G}(p)\right)+R>0, \quad \forall p \in \mathbb{C}:|p|=1
$$

is satisfied. Then there exists a linear bounded operator $M=M^{*}: \ell_{\rho}^{2}(1, \infty ; U) \rightarrow \ell_{\rho}^{2}(1, \infty ; U)$ with the following property:

2 Realization of a time-series

Theorem 3 (continued)

Suppose $\sigma=\{\sigma(k)\}_{k=1}^{\infty}$ is a sequence generated by (6) with $h=\{h(k)\}_{k=1}^{\infty}$. Then if $(h, M h)<0$ we have $\sigma \in \ell_{\rho}^{2}(1, \infty ; U)$, i.e. σ is stable. If $(h, M h)>0$ then σ is unstable.

Remark 2

$z(k)=\tau^{k} z(0)+\sum_{j=0}^{k-1} \tau^{k-j-1} B u(j), k=1,2, \ldots$,
$z(0)=\left(z_{0}(0), z_{1}(0), \ldots\right) \quad$ a time-series $, \mathfrak{M}(z(0)):=c l\left(\left\{\tau^{k}(z(0))\right\}_{k=0}^{\infty}\right)$ the orbit closure. Suppose $\operatorname{dim}_{F} \mathfrak{M}=: d<\infty$ and let n be the smallest natural number s.t. $n \geq 2 d+1$.
$L:=\left\{\left(z_{0}, z_{1}, \ldots, z_{n-1}\right)\right\}$ is an n-dimensional subspace of $\ell_{\rho}^{2}(1, \infty ; U)$. The typical projections $\ell_{\rho}^{2}(1, \infty ; U) \rightarrow L$ are one-to-one. Let the standard projection π_{n} be typical. Then on
$E:=\pi_{n}\left(\mathfrak{M}(z(0))\right.$ there is given a dynamical system $\tilde{\tau}:=\pi_{n} \circ \tau \circ \pi_{n}^{-1}$

$$
(\tilde{\tau}, L):\left(z_{0}, z_{1}, \ldots, z_{n-1}\right) \mapsto\left(z_{1}, z_{2}, \ldots, z_{n}\right) .
$$

[^0]We consider an ODE of the second order

$$
\begin{equation*}
\ddot{\sigma}+\alpha \dot{\sigma}+\varphi(\sigma(t), t)=0 \tag{8}
\end{equation*}
$$

with a smooth nonlinearity $\varphi: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$. Assume that any solution of (6) exists on \mathbb{R}.

Let us rewrite (6) in the following way

$$
\left\{\begin{array}{l}
\dot{z}(t)=A z(t)+B \varphi(\sigma(t), t) \tag{9}\\
\sigma(t)=C z(t)
\end{array}\right.
$$

with $\quad A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \quad B=\binom{0}{-1}, \quad C=\left(\begin{array}{cc}1, & 0\end{array}\right)$,

3 Transport equation for the Mathieu-Hill equation

where $\sigma(t)$ is the input and $\varphi(\sigma(t), t)$ is the output.
As "nonlinear part" is considered the function

$$
\begin{equation*}
\varphi(\sigma, t)=(\beta+\gamma \cos (t)) \sigma \tag{10}
\end{equation*}
$$

where β and γ are parameters. Note that equation (6) with φ given by (8) has the form of the Mathieu-Hill equation.
Time is considered on the finite interval $[0, T]$.
All functions are considered as sequences

$$
\left\{\sigma\left(t_{i}\right)\right\}_{1}^{N+1}, t_{k}=(k-1) \frac{T}{N}, k=1,2 . ., N+1
$$

where $N+1$ is the number of nodes on the interval $[0, T]$.

Step 1

Find a sector for the nonlinear part such that
$\mu_{1} \leq \varphi(\sigma, t) / \sigma \leq \mu_{2} \quad \forall(t, \sigma) \in \mathbb{R} \times \mathbb{R}, \quad \sigma \neq 0$.
Take initial data $\left(\sigma_{i}(0), \dot{\sigma}_{i}(0)\right), i=1,2 . ., L$, and calculate the numbers μ_{1}, μ_{2} such that the relation
$\mu_{1} \leq \varphi\left(\sigma\left(t_{i}\right), t_{i}\right) / \sigma\left(t_{i}\right) \leq \mu_{2}, \quad i=1, . ., N+1$,
is satisfied. For the calculation of μ_{1}, μ_{2} an adaptive algorithm is used which is finitely converging in the sense of Yakubovich [1977].

3 Transport equation for the Mathieu-Hill equation

Step 2
Write system (8) as Volterra integral

$$
\begin{align*}
l \sigma(t) & =h(t)+\int_{0}^{t} G(t-\tau) \varphi(\sigma(\tau), \tau) \mathrm{d} \tau \tag{11}\\
\varphi(\sigma, t) & =(\beta+\gamma \cos (t)) \sigma
\end{align*}
$$

where $h(\cdot)$ is the input and $\sigma(\cdot)$ the output $\left(\sigma \equiv \sigma_{h}\right)$.
The goal is to construct an operator M which gives all information about stability of $\sigma_{h}(\cdot)$ with respect to the input $h(\cdot)$.
Assume that the kernel of (9) can be written as

$$
G(t-\tau)=e^{\lambda(t-\tau)}
$$

where λ is an unknown parameter.
Let $\rho \geq 0$ be the unknown parameter of the Hilbert space L_{ρ}^{2} introduced in Section 2.

3 Transport equation for the Mathieu-Hill equation

Step 3

In order to construct the operator M we have as an auxiliary problem to solve the linear Fredholm integral equation of the second kind

$$
\begin{equation*}
\int_{0}^{T} S_{(\rho, \lambda)}(t, \tau) \tilde{u}_{h,(\rho, \lambda)}(\tau) \mathrm{d} \tau+\tilde{u}_{h,(\rho, \lambda)}(t)=g_{h,(\rho, \lambda)}(t), \tag{12}
\end{equation*}
$$

where $S_{(\rho, \lambda)}$ is a function depending on ρ and λ, and $g_{h,(\rho, \lambda)}$ depends also on $h(\cdot)$.
From this equation we get $\tilde{u}_{h,(\rho, \lambda)}(\cdot)$ which will be used further.

Remark 1

If we solve the integral equation (10) we get the solution of an associated Riccati equation. In general the Riccati equation is a quadratic equation with respect to the unknown matrix or operator. In our situation this equation (10) is linear what is important for practical realization. The reason for this is the special type of hyperbolic equations arising in (3).

3 Transport equation for the Mathieu-Hill equation

Step 4

Construct the cost-functional $J_{\lambda, \rho}^{T}(\cdot)$ on L_{ρ}^{2}.
Take some initial values $\bar{\lambda}, \bar{\rho}$, calculate the functional with these parameters and compare with the data.
Use for this an optimization procedure with respect to λ, ρ for the functional computed along the solution of the Fredholm integral equation (10).

As result of this step we get the functional $J_{\lambda_{0}, \rho_{0}}^{T}$.
Step 5
Define the operator M^{T} by

$$
\begin{align*}
\left(M^{T} h\right)(s):=-\mathrm{d} s & \frac{1}{\lambda_{1}} \int_{0}^{T}\left\{e^{-2 \rho(\tau)}\left[e_{s-\tau} e^{\lambda_{1}(s-\tau)}+e_{\tau-s} \mu_{1}(s-\tau)\right]+\right. \\
+ & \left.\mu_{2}(-\tau) e^{\lambda_{1} s}\right\}\left(P \widetilde{\sigma}_{h}(\tau)+Q h(\tau)\right) \mathrm{d} \tau, \quad \forall h \in W_{\rho_{0}}^{1,2} \tag{13}
\end{align*}
$$

where $\widetilde{\sigma}_{h}(t)=\int_{0}^{t}\left(e^{\lambda_{0}(t-\tau)}+h(\tau)\right) \mathrm{d} \tau+h(t)$ and the functions
$\lambda_{1}(\cdot), \mu_{1}(\cdot), \mu_{2}(\cdot)$ depend only on ρ_{0}.
Then the sign of the test functional

$$
\begin{equation*}
<M^{T} h, h>=\int_{0}^{T}\left(M^{T} h\right)(s) h(s) e^{2 \rho_{0} s} \mathrm{ds} \tag{14}
\end{equation*}
$$

gives us the information about stability of $\sigma(\cdot)$ according to Theorem 2.

4 Numerical results

Consider the equation (8),(7) with the system parameters

$$
\begin{equation*}
\alpha=1 / 3 ; \beta=1 ; \gamma=2 \tag{15}
\end{equation*}
$$

Using the above algorithm with $T=2 \pi, N=18, L=50$ we find the sector from Step 1 for the "nonlinearity" (8) with $\mu_{1}=-1, \mu_{2}=3$.
For the kernel $G(\cdot)$ and the function space L_{ρ}^{2} we obtain the parameters

$$
\begin{equation*}
\lambda_{0}=0.29, \rho_{0}=0.1 \tag{16}
\end{equation*}
$$

This defines the operator M^{T} for the test functional (11)
In order to verify our result we consider the solution of (9) with the initial data

$$
\begin{equation*}
\sigma(0)=0.15683, \dot{\sigma}(0)=0,25269 \tag{17}
\end{equation*}
$$

Computing the associated h in (9) we get a positive sign of the test functional (11). According to Brusin's theorem the solution must be unstable.
The direct calculation of the solution (Fig. 3) shows their instability. This means that the information from test functional (12) is correct.

References

围 Abdalova，Yu．A．and V．Reitmann Stability analysis of functional Volterra equations by realization methods．Differential Equations，1－12 （2015）．
Brusin，V．A．，Use of method of abstract differential equations in the study of Volterra integral equation．Sibirskii Mathematicheskii Zhurnal， 18，1246－1258（1977）．
Fuhrmann，P．A．，On realizations of linear systems and applications to some questions of stability．Math．Syst．Th．，8，132－141（1974）．
囯 Helton，J．W．，Systems with infinite－dimensional state space：the Hilbert space approach．Proc．IEEE，64，145－160（1976）．
目 Kalman，R．E．，Arbib，M．，and P．Falb，Topics in Mathematical Systems Theory．McGraw－Hill，New York（1969）．
目 Lax，P．D．and R．S．Phillips，Scattering theory for dissipative hyperbolic systems．J．Funct．Anal．，14， 172 － 235 （1973）．

References

围 Reed，M．and B．Simon，Methods of Modern Mathematical Physics III： Scattering Theory．Academic Press，New York（1979）．
圊 Reitmann，V．，Realization theory methods for the stability investigation of non－linear infinite－dimensional input－output systems．MATHEM． BOHEMICA，136／2，185－194（2011）．
目 Salamon，D．，Realization Theory in Hilbert Space，Math．System Theory．21，147－164（1989）．

圊 Yakubovich，V．A．，On the abstract theory of absolute stability of nonlinear systems．Vestn．Leningr．Univ．，Ser．Mat．Mekh．，Astran．，13， 99－118（1977）．

Thank you for your attention!

[^0]: Y. Abdalova, V. Reitmann (SPbSU)

