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1 Realization of a Volterra integral equation

Consider the nonlinear Volterra integral equation

σ(t) = h(t) +

t∫
0

G (t − s)ϕ(σ(s), s) ds (1)

with σ : R+ → U (Rn,Hilbert space) as output ,
h : R+ → U as perturbation ,
u(·) := ϕ(σ(·), ·) : R+ → U as control ,
∀t ≥ 0 : G (t) ∈ L(U ,U) as kernel and
ϕ : U × R+ → U as nonlinearity .

(A1) t 7→ G (t) is twice piecewise-differentiable and
∃ c > 0, ρ0 > 0, λ > 0 : ‖G (t)‖L(U ,U) ≤ ce−ρ0t , ∀t ≥ 0,∫ ∞

0

(
‖Ġ (t)‖2L(U ,U) + ‖G̈ (t)‖2L(U ,U)

)
e2λt dt <∞ .
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1 Realization of a Volterra integral equation

(A2) ∃P = P∗,Q,R ∈ L(U ,U),

(σ(t),Pσ(t))U+2(σ(t),Qϕ(σ(t), t))U+(ϕ(σ(t), t),Rϕ(σ(t), t))U ≤ 0
(2)

∀σ(·), ϕ(σ(·), ·) , σ(·) continuous solution of (1) , ∀t ≥ 0 ,
(Quadratic constraints)

L2
ρ(R+;U) :=

{
f ∈ L2

loc(R+;U) :

∫ ∞
0
|f (t)|2U e2ρt dt <∞

}
is a weighted L2-space ,

W 1,2
ρ (R+;U) :=

{
f ∈ L2

ρ(R+;U) : ḟ ∈ L2
ρ(R+;U)

}
is a weighted Sobolev space .

(A3) The linear part of (1) is ρ-stable, i.e.

∃ ρ ≥ 0 ∀u ∈ L2(R+;U) 7→ σ(·) ∈W 1,2
ρ (R+;U) ,

σ(t) =

t∫
0

G (t − s)u(s) ds is a bounded operator.
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1 Realization of a Volterra integral equation

Goal: Find Hilbert spaces Z1 ⊂ Z0 ⊂ Z−1 (Rigged Hilbert space structure)
and linear bounded operators

A : Z1 → Z−1, B : U → Z−1, C : Z0 → U

such that the absolute stability behaviour of (1) coincides with the absolute
stability behaviour of the non-autonomous dynamical system

ż = Az + Bu(t), σ(t) = Cz(t), u(t) = ϕ(σ(t), t) , (3)

and the following conditions are satisfied:
(i) z(0, z0, u) = 0 ∀z0 ∈ Z0, ∀u ∈ L2

loc(0,∞;U) , (Initial condition) ;
(ii) u(t) = 0, ∀t ≤ T ⇒ z(t, 0, u) = 0, σ(t, 0, u) = 0, ∀t ≤ T ,

(Causality) ;
(iii) z(t + s, z0, u) = z(t, z(s, z0, u), τ su),

σ(t + s, z0, u) = σ(t, z(s, z0, u), τ su)
∀z0 ∈ Z0, ∀u ∈ L2

loc(0,∞;U),∀t, s ≥ 0,
(Time-invariance or cocycle property)
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1 Realization of a Volterra integral equation

with τ su(t) :=

{
u(t + s) for t + s ≥ 0 ,

0 for t + s < 0
as shift semi-group.

Example 1
ẋ = d(y − x) , ẏ = rx − y − xz , ż = −bz + xy

d > 0, r > 0, b > 0 Lorenz equation
Nonlinearities:
ϕ1(x , y , z) = xz , ϕ2(x , y , z) = xy , ϕ = (ϕ1, ϕ2) , σ = (x , y , z) ∈ R3

Quadratic constraints: F (ϕ, σ) := ϕ1y − ϕ2z = xyz − xyz ≡ 0 =̂(2)

Transfer functions: ỹ = −Ĝ1(iω)ϕ̃1 , ω ∈ R
z̃ = −Ĝ2(iω)ϕ̃2

Ĝ1(p) = p+d
p2+p(d+1)+d(1−r)

Ĝ2(p) = − 1
p+b

}
⇒ G (t)
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1 Realization of a Volterra integral equation

Example 1 (continued)
Frequency domain condition (5) is satisfied for 0 < r < 1
Associated Boltzmann equation in W 1,2

ρ (R+;R3)

We call this imbedding of (1) into a time-invariant control system with the
same absolute stability behaviour.

Theorem 1 (Kalman [1969], Helton [1976], Salamon [1989])
Suppose that (1) is linear and the input / output process given by (1) is
ρ-stable. Then there exists an imbedding of (1) into a system (3) with the
same absolute stability behaviour by a Boltzmann-type transport equation,
i.e. by a system (3)

with Z0 := W 1,2
ρ (R+;U), 0 < ρ < ρ0 ,
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1 Realization of a Volterra integral equation

Theorem 1 (continued)

Z1 := D(A) = {ξ : ξ(s) ∈W 1,2
ρ (R+;U),

∞∫
0

e2ρs |ξ̈(s)|2ds <∞},

(A ξ)(s) := ds
∂ξ(s)

∂s
transport or impulse operator , (4)

(Bη)(s) := G (s)η, η ∈ U(= Rn), Cz(s) := z(0), ∀z(s) ∈W 1,2
ρ (R+;U).

Example 2
Consider ẏ = Ay + Bϕ(σ(t), t), σ(t) = Cy(t) ,

A − n × n, B − n × 1, C − 1× n matrices ,
ϕ : R× R+ → R ,
G (t) := CeAtB , h(t) = CeAty0 ,

σ(t) = h(t) +

∫ t

0
G (t − s)ϕ (σ(s), s)ds .
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1 Realization of a Volterra integral equation

Example 2 (continued)
The nonlinear Boltzmann transport equation from scattering theory

ds
∂σ

∂t
= ds

∂σ

∂x
+

x∫
0

G (x − s)ϕ(σ(s, x)) ds

is a first order integro-differential equation with boundary and initial
conditions

σ(t, 0) = 0, σ(0, x) = σ0(x) .

Theorem 2 (Generalized Brusin’s theorem; Reitmann [2011])

Consider the nonlinear Volterra integral equation (1) under the assumptions

(A1) – (A3). Let Ĝ (λ) :=
∞∫
0
e−λtG (t) dt be the transfer operator of the

kernel. Assume that the class of nonlinearities described by (A2) contains
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1 Realization of a Volterra integral equation

Theorem 2 (continued)
at least one linear function ϕ(σ, t) = Kσ with K ∈ L(U ,U) such that the
operator (I − Ĝ (λ)K )−1 has a finite number of singularities in the strip
0 < ε1 ≤ Re λ ≤ ε2 . Suppose that the frequency–domain condition

Ĝ ∗(iω)PĜ (iω) + 2Re(Q∗Ĝ (iω)) + R > 0 ∀ω ∈ R (5)

is satisfied. Then the nonlinear integral equation (1) can be imbedded into
a non-autonomous dynamical system (3) with the same absolute stability
behaviour realized with transport operator (4), i.e. there exists a linear
bounded operator M = M∗ : W 1,2

ρ (R+;U)→W 1,2
ρ (R+;U) with the

following properties.
1) If σ(t) ≡ σ(t, h) with h ∈W 1,2

ρ (R+;U) is a continuous solution of the
integral equation (1) then the solution z(t) ≡ z(t, h) of (3) with
z(0, h) = h exists and there is a positive δ > 0 such that
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1 Realization of a Volterra integral equation

Theorem 2 (continued)∫ t2

t1

(
|ϕ(σ(t), t) |2U + ‖ z(t) ‖2

W 1,2
ρ

)
dt ≤ δ (Mz(t), z(t))

∣∣t2
t1
∀ 0 ≤ t1 < t2 .

2) Suppose (σ(·), h(·)) satisfies (1) and (h(·),Mh(·)) < 0. Then
σ(·) ∈ L2(R+;U), i.e. it is stable. If (h(·),Mh(·)) > 0 then σ(·) is
unstable, i.e. there exists a number β > 0 such that

lim
T→∞

e−βT
∫ T

0
|ϕ(σ(t), t) |2U dt =∞ .

3) M is the operator solution of a linear integral equation.

Remark 1

The (algebraic) dimension d of the cone
{h ∈W 1,2

ρ (R+;U) : (Mh, h) > 0} is finite and coincides with the topo-
logical dimension of an orbit closure M := cl{z(t), t ≥ 0} of system (3).
Thus d real coordinates are sufficient to describe by one-to-one map the
points in M.
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2 Realization of a time-series

Consider the nonlinear system

σ(k) = h(k) +
k−1∑
j=0

G (k − j − 1)ϕ (σ(j), j) , (6)

k = 1, 2, . . . , σ(0) = σ0, {σ(k)}∞k=1 a time-series generated by (6) ,
h : N0 → U , U : Hilbert space,Rn ,

G (j) ∈ L(U ,U) ,

ϕ : U × N0 → U ,

Ĝ (p) :=
∞∑

k=0

G (k)p−k z-transform of G ,

T (p) := Ĝ (1/p) = Ĝ0 + Ĝ1p + Ĝ2p2 + . . . .
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2 Realization of a time-series

(~A1) ∃ c > 0 ∃ ρ0 > 1 : ‖G (k) ‖L(U ,U) ≤ cρ−k
0 , k = 1, 2, . . . .[2ex]

(~A2) ∃P = P∗,Q,R ∈ L(U ,U) s.t.
(σ(k),Pσ(k))U + 2(σ(k),Qϕ(σ(k), k))U
+ (ϕ(σ(k), k), Rϕ(σ(k), k))U ≤ 0
∀ {σ(k)} solution of (6), {ϕ(σ(k), k)} , k = 1, 2, . . . ,

Let `2ρ(1,∞;U) with 0 < ρ <∞ be the set of sequences
u = (u1, u2, . . .) with uk ∈ U for which {ρ−kuk} belongs to `2(1,∞;U),
i.e.

∑∞
k=1 ρ

−2k |uk |2U <∞.

(~A3) The linear part of (6) is ρ-stable, i.e. ∃ ρ > 0 ∀u ∈ `2(1,∞;U) the
sequence {σ(k)} , σ(k) :=

∑k−1
j=0 G (k − j − 1)u(j) belongs to

`2ρ(1,∞;U).
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2 Realization of a time-series

Realization procedure:
1) Introduce the backward shift τ : `2ρ(1,∞;U)→ `2ρ(1,∞;U) by

τ(u1, u2, . . .) = (u2, u3, . . .), ∀u = (u1, u2, . . .) ∈ `2ρ(1,∞;U).
Define A := τ

2) Define B : U → `2ρ(1,∞;U) by

Bu := (Ĝ1u, Ĝ2u, . . .), ∀u ∈ U ,

and C : `2ρ(1,∞;U)→ U by

C (u1, u2, . . .) := u1 , ∀(u1, u2, . . .) ∈ `2ρ(1,∞;U) .

3) z(k + 1) = Az(k) + Bu(k) ,

σ(k) = Cz(k), z(0) = z0 ∈ `2ρ(1,∞;U) ,

u(k) = ϕ(σ(k), k) , k = 0, 1, 2, . . . . (7)

(7) is called discrete-time Boltzmann-type transport equation associated
with (6).
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2 Realization of a time-series

Example 3

σn+2 + σn+1 + ϕ(σn, n) = 0 , n = 0, 1, 2, . . . ,
σ(0) = σ0, σ(1) = σ1 .

z-transform: p2σ̃ + pσ̃ = −ϕ̃ ,
Ĝ (p) = 1

p2+p ,

Ĝ
(1
p

)
=

1
1
p2 + 1

p
=

p2

1 + p
= p − 1 +

1
1 + p

= p − 1 +
∞∑

m=0

(−1)mpm

= p2 − p3 + p4 − · · · .

Ĝm =

{
0 , m = 0, 1 ,

(−1)m , m = 2, 3, . . .

(z1(k + 1), z2(k + 2), . . .)

= τ(z1(k), z2(k), . . .) + (0, ϕ(σk , k),−ϕ(σk , k), . . .) ,
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2 Realization of a time-series

Example 3 (continued)

k = 0, 1, 2, . . . , σk = z1(k) ,

zm(k + 1) = zm+1(k) + (−1)m ϕ(z1(k), k),m, k ∈ N0

Space- and time-discrete version of the Ginsburg-Landau equation in
`2ρ(1,∞;U) :

uj(n + 1) = uj(n)− (1− iβ)uj(n) | uj(n) |2

+ κ(uj−1(n)− 2uj(n) + uj+1(n)) uj(n) ∈ C, n, j ∈ Z.
Dynamical objects of the lattice model associated to a time-series:

- finite-dimensional attractors
- hyperbolicity
- travelling waves uj(n) = Ψ(lj + mn)

- spatial structures
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2 Realization of a time-series

Theorem 3

Consider the iteration (6) under the assumptions (~A1) – (~A3). Let
Ĝ (p) :=

∑∞
k=0 G (k)p−k be the z-transform of G . Assume that the class

of nonlinearities described by (~A2) contains at least one linear function
ϕ(σ, t) = Kσ with K ∈ L(U ,U) such that the operator (I − Ĝ (p)K )−1 has
a finite number of singularities in the ring

1 < ε1 ≤ | p | ≤ ε2.

Suppose that the frequency-domain condition

Ĝ ∗(p)PĜ ∗(p) + 2Re (Q∗Ĝ (p)) + R > 0, ∀p ∈ C : | p | = 1

is satisfied. Then there exists a linear bounded operator
M = M∗ : `2ρ(1,∞;U)→ `2ρ(1,∞;U) with the following property:
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2 Realization of a time-series

Theorem 3 (continued)
Suppose σ = {σ(k)}∞k=1 is a sequence generated by (6) with
h = {h(k)}∞k=1. Then if (h,Mh) < 0 we have σ ∈ `2ρ(1,∞;U), i.e. σ is
stable. If (h,Mh) > 0 then σ is unstable.

Remark 2

z(k) = τkz(0) +
∑k−1

j=0 τ
k−j−1Bu(j), k = 1, 2, . . . ,

z(0) = (z0(0), z1(0), . . .) a time-series , M(z(0)) := cl({τk(z(0))}∞k=0)
the orbit closure. Suppose dimF M =: d <∞ and let n be the smallest
natural number s.t. n ≥ 2d + 1 .
L := {(z0, z1, . . . , zn−1)} is an n-dimensional subspace of `2ρ(1,∞;U).
The typical projections `2ρ(1,∞;U)→ L are one-to-one. Let the standard
projection πn be typical. Then on
E := πn(M(z(0)) there is given a dynamical system τ̃ := πn ◦ τ ◦ π−1

n
(τ̃ , L) : (z0, z1, . . . , zn−1) 7→ (z1, z2, . . . , zn).
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3 Transport equation for the Mathieu-Hill equation

We consider an ODE of the second order

σ̈ + ασ̇ + ϕ(σ(t), t) = 0 (8)

with a smooth nonlinearity ϕ : R× R→ R. Assume that any solution of
(6) exists on R.
Let us rewrite (6) in the following way{

ż(t) = Az(t) + Bϕ(σ(t), t)
σ(t) = Cz(t) ,

(9)

with A =

(
0 1
−1 0

)
, B =

(
0
−1

)
, C =

(
1 , 0

)
,
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3 Transport equation for the Mathieu-Hill equation

where σ(t) is the input and ϕ(σ(t), t) is the output.
As “nonlinear part" is considered the function

ϕ(σ, t) = (β + γ cos(t))σ , (10)

where β and γ are parameters. Note that equation (6) with ϕ given by (8)
has the form of the Mathieu-Hill equation.
Time is considered on the finite interval [0,T ].
All functions are considered as sequences

{σ(ti )}N+1
1 , tk = (k − 1)

T
N
, k = 1, 2..,N + 1

where N + 1 is the number of nodes on the interval [0,T ].
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3 Transport equation for the Mathieu-Hill equation

Step 1
Find a sector for the nonlinear part such that
µ1 ≤ ϕ(σ, t)/σ ≤ µ2 ∀(t, σ) ∈ R× R, σ 6= 0.
Take initial data (σi (0), σ̇i (0)), i = 1, 2.., L, and calculate the numbers
µ1, µ2 such that the relation
µ1 ≤ ϕ(σ(ti ), ti )/σ(ti ) ≤ µ2 , i = 1, ..,N + 1 ,
is satisfied. For the calculation of µ1, µ2 an adaptive algorithm is used
which is finitely converging in the sense of Yakubovich [1977].
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3 Transport equation for the Mathieu-Hill equation

Step 2
Write system (8) as Volterra integral

lσ(t) = h(t) +

t∫
0

G (t − τ)ϕ(σ(τ), τ) dτ , (11)

ϕ(σ, t) = (β + γ cos(t))σ,

where h(·) is the input and σ(·) the output (σ ≡ σh).
The goal is to construct an operator M which gives all information about
stability of σh(·) with respect to the input h(·).
Assume that the kernel of (9) can be written as

G (t − τ) = eλ(t−τ),

where λ is an unknown parameter.
Let ρ ≥ 0 be the unknown parameter of the Hilbert space L2

ρ introduced in
Section 2.
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3 Transport equation for the Mathieu-Hill equation

Step 3
In order to construct the operator M we have as an auxiliary problem to
solve the linear Fredholm integral equation of the second kind

T∫
0

S(ρ,λ)(t, τ)ũh,(ρ,λ)(τ)dτ + ũh,(ρ,λ)(t) = gh,(ρ,λ)(t), (12)

where S(ρ,λ) is a function depending on ρ and λ, and gh,(ρ,λ) depends also
on h(·).
From this equation we get ũh,(ρ,λ)(·) which will be used further.

Remark 1
If we solve the integral equation (10) we get the solution of an associated
Riccati equation. In general the Riccati equation is a quadratic equation
with respect to the unknown matrix or operator. In our situation this
equation (10) is linear what is important for practical realization. The
reason for this is the special type of hyperbolic equations arising in (3).

Y. Abdalova, V. Reitmann (SPbSU) Stability invstigation by realization theory 22 / 28



3 Transport equation for the Mathieu-Hill equation

Step 4
Construct the cost-functional JT

λ,ρ(·) on L2
ρ.

Take some initial values λ, ρ, calculate the functional with these parameters
and compare with the data.
Use for this an optimization procedure with respect to λ, ρ for the
functional computed along the solution of the Fredholm integral equation
(10).
As result of this step we get the functional JT

λ0,ρ0
.

Step 5
Define the operator MT by

(MTh)(s) := −ds
1
λ1

T∫
0

{e−2ρ(τ)
[
es−τeλ1(s−τ) + eτ−sµ1(s − τ)

]
+

+µ2(−τ)eλ1s}(Pσ̃h(τ) + Qh(τ)) dτ , ∀h ∈W 1,2
ρ0
, (13)
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3 Transport equation for the Mathieu-Hill equation

where σ̃h(t) =
t∫
0

(eλ0(t−τ) + h(τ))dτ + h(t) and the functions

λ1(·), µ1(·), µ2(·) depend only on ρ0.
Then the sign of the test functional

< MTh, h >=

T∫
0

(MTh)(s)h(s)e2ρ0s ds (14)

gives us the information about stability of σ(·) according to Theorem 2.
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4 Numerical results

Consider the equation (8),(7) with the system parameters

α = 1/3; β = 1; γ = 2. (15)

Using the above algorithm with T = 2π,N = 18, L = 50 we find the sector
from Step 1 for the “nonlinearity" (8) with µ1 = −1, µ2 = 3.
For the kernel G (·) and the function space L2

ρ we obtain the parameters

λ0 = 0.29, ρ0 = 0.1 . (16)

This defines the operator MT for the test functional (11)
In order to verify our result we consider the solution of (9) with the initial
data

σ(0) = 0.15683, σ̇(0) = 0, 25269 . (17)

Computing the associated h in (9) we get a positive sign of the test
functional (11). According to Brusin’s theorem the solution must be
unstable.
The direct calculation of the solution (Fig. 3) shows their instability.
This means that the information from test functional (12) is correct.
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