Bifurcation on a finite time interval in nonlinear hyperbolic-parabolic parameter dependent control systems

D. Kalinichenko and V. Reitmann

Saint-Petersburg State University

Department of Mathematics and Mechanics

10th Conference on Dynamical Systems Differential Equations and Applications

July 07 - 11, 2014, Madrid, Spain

1.1 The mechanical model

1.2 Notation

Suppose $\Omega \subset \mathbb{R}^m$ is a domain, $\Gamma = \partial \Omega$ is the piecewise Lipschitz continuous boundary divided into the three disjunct parts Γ_D , Γ_N and Γ_C . Assume that $x = (x^1, \ldots, x^m)$ is the location in $\Omega, t \in \mathbb{R}_+$ is the time, $n = (n^1, \ldots, n^m)$ is the unit normal to $\Gamma, u(x, t) = (u^1(x, t), \ldots, u^m(x, t))$ are the displacements, $\Theta = \Theta(x, t)$ is the temperature, $\sigma = (\sigma^{ij})$ is the stress tensor, $f_A = (f_A^1(x, t), \ldots, f_A^m(x, t))$ are the body forces in Ω and $\kappa = \kappa(x, t)$ is the density of heat sources.

1.3 Elastoplastic and heat equations

The equations of motion and heat transfer are given by

$$[\sigma^{kj}(\delta^i_k + u^i_{,k})]_{,j} + f^i_A = \ddot{u}^i \text{ in } \Omega \times (0,T), \qquad (1)$$

$$\dot{\Theta} - (k^{ij}\Theta_{,j})_{,i} = -c^{ij}u_{i,j} + \kappa \text{ in } \Omega \times (0,T), \qquad (2)$$

where $c^{ij} = c^{ij}(x)$ and $k^{ij} = k^{ij}(x)$ are the tensors of thermal expansion and thermal conductivity, respectively, and σ is defined by the *thermovisco-elastoplastic stress-strain relation*

$$\sigma^{ij} = a^{ijkl} u_{k,l} + b^{ijkl} \dot{u}_{k,l} - c^{ij}\Theta + \mathcal{P}^{ij}[u_{k,l},\Theta] \text{ in } \Omega \times (0,T), \quad (3)$$

where (a^{ijkl}) and (b^{ijkl}) are the tensors of elastic and viscosity coefficients, respectively, $\{\mathcal{P}^{ij}[\cdot,\Theta]\}_{\Theta>0}$ is the plastic part given by Θ -dependent hysteresis operators.

As boundary and initial conditions we have: a) Prescribed displacements and temperature u = 0 on $\Gamma_D \times (0, T)$; $\Theta = \Theta_b$ on $(\Gamma_D \cup \Gamma_N) \times (0, T)$; (4) $u(\cdot, 0) = u_0$, $\dot{u}(\cdot, 0) = u_1$, $\Theta(\cdot, 0) = \Theta_0$ in Ω ;

b) Prescribed boundary forces

$$\sigma^{ij}n_j = f_N^i \quad \text{on} \quad \Gamma_N \times (0, T) , \qquad (5)$$

where $f_N = (f_N^i(x, t))$ are the applied tractions;

c) Frictional stress and temperature on Γ_C By Coulomb's law of dry friction

$$\begin{aligned} |\sigma_{\mathcal{T}}| &\leq \mu |\sigma_{\mathcal{N}}| (1 - \delta |\sigma_{\mathcal{N}}|)_{+} \text{ on } \Gamma_{\mathcal{C}} \times (0, \mathcal{T}), \\ |\sigma_{\mathcal{T}}| &< \mu |\sigma_{\mathcal{N}}| (1 - \delta |\sigma_{\mathcal{N}}|)_{+} \Rightarrow \dot{u}_{\mathcal{T}} = v_{0} \quad (\text{stick zone}) , \\ |\sigma_{\mathcal{T}}| &= \mu |\sigma_{\mathcal{N}}| (1 - \delta |\sigma_{\mathcal{N}}|)_{+} \Rightarrow \dot{u}_{\mathcal{T}} = v_{0} - \lambda \sigma_{\mathcal{T}} \quad (\text{slip zone}) , \end{aligned}$$
(6)

$$k^{ij}\Theta_{,i}n_{j} = \mu |\sigma_{\mathcal{N}}|(1-\delta|\sigma_{\mathcal{N}}|)_{+}s_{\mathcal{C}}(\cdot,|\dot{u}_{\mathcal{T}}-v_{0}|) - k_{e}(\Theta-\Theta_{R}), \qquad (7)$$

where $\sigma_{\mathcal{N}} = \sigma^{ij} n_i n_j$ and $u_{\mathcal{N}} = u^i n_i$ are the normal components of σ and uon Γ , respectively, $\sigma_{\mathcal{T}}^i = \sigma^{ij} n_j - \sigma_{\mathcal{N}} n^i$ and $u_{\mathcal{T}}^i = u^i - u_{\mathcal{N}} n^i$ are the tangential components of σ and u on Γ , respectively, μ is the friction coefficient, v_0 is the velocity of the moving rigid body, δ is a positive constant, Θ_R is the temperature of the rigid body, $s_C(\cdot, r)$ is a prescribed distance function and k_e is the coefficient of heat exchange between elastoplastic body and rigid body.

2.1 Scales of Hilbert spaces

A collection of real Hilbert spaces $\{H_{\alpha}\}_{\alpha\in\mathbb{R}}$ with scalar product $(\cdot, \cdot)_{\alpha}$ and norm $\|\cdot\|_{\alpha}$ is called *scale* of Hilbert spaces if the following is true: (i) For any $\alpha > \beta$ the space H_{α} is continuously embedded into H_{β} , i.e. $H_{\alpha} \subset H_{\beta}$ and there exists a $c_1 > 0$ such that $\|h\|_{\beta} \le c_1 \|h\|_{\alpha}, \forall h \in H_{\alpha}$, and H_{α} is dense in H_{β} ;

(ii) For any $\alpha > 0$ and $h \in H_{\alpha}$ the linear functional $(\cdot, h)_0$ on H_0 can be continuously extended to a linear continuous functional $(\cdot, h)_{-\alpha,\alpha}$ on $H_{-\alpha}$ satisfying $|(h', h)_{-\alpha,\alpha}| \le ||h'||_{-\alpha} ||h||_{\alpha}$, $\forall h' \in H_{-\alpha}$, $\forall h \in H_{\alpha}$. Any linear continuous functional ℓ on H_{α} has the form $\ell(h) = (h', h)_{-\alpha,\alpha}$ with some $h' \in H_{-\alpha}$, i.e., $H_{-\alpha}$ is isomorphic to the space of linear continuous functionals on H_{α} . From (i) it follows that for any $\alpha \in (\beta, \gamma)$ the space H_{α} is *rigged* by H_{β} and H_{γ} , i.e., $H_{\gamma} \subset H_{\alpha} \subset H_{\beta}$ with dense and continuous embeddings.

2 Coupled variational systems

Example 1

Suppose $\Omega \subset \mathbb{R}^m$ is a domain and N is an arbitrary natural number. $\{H^{(N)}_{\alpha}\}_{\alpha\in\mathbb{R}}$ is the scale of fractional Sobolev spaces such that $H^{(N)}_{\ell} = W^{\ell,2}(\Omega), \ell = 0, 1, \dots, N$, with norms $\|u\|^2_{H^{(N)}}$ given by $\int_{\Omega} (|u|^2 + \sum_{|\beta|=1}^{\alpha} |D^{\beta}u|^2) dx =: \|u\|_{W^{\alpha,2}}^2,$ if $\alpha \ge 0$ integer, $\|u\|_{W^{k,2}}^2+\sum_{|\beta|=k}\int_{\Omega}\int_{\Omega}\frac{|D^{\beta}u(x)-D^{\beta}u(y)|^2}{|x-y|^{k+2\lambda}}dxdy,$ if $\alpha = k + \lambda > 0, k \ge 0$ integer, $\lambda \in (0, 1)$, $\sup_{\|v\|_{\mu(N)}=1} |\int_{\Omega} u(x)v(x)dx|, \text{if } \alpha < 0.$

2.2 A simplified contact problem

Suppose $\Omega \subset \mathbb{R}^m$ is a bounded domain, $\partial \Omega$ is smooth, u = u(x, t) and $\Theta = \Theta(x, t)$ are the displacement and the temperature in the elastic body satisfying the system

$$u_{tt} + 2\varepsilon u_t - \Delta u + \alpha u = \xi(t), \quad \xi(t) \in \varphi(\Theta(t)), \tag{8}$$

$$\Theta_t - \beta \Delta \Theta + u - \gamma \zeta(t) = 0, \quad \zeta(t) = g(\Theta(t)),$$
 (9)

with $lpha,eta,arepsilon,\gamma$ constants, and the boundary and initial conditions

$$u = 0, \ \Theta = 0 \quad \text{on } \partial\Omega \times (0, T)$$
 (10)

$$u(\cdot,0) = u_0(\cdot), \ \dot{u}(\cdot,0) = u_1(\cdot), \Theta(\cdot,0) = \Theta_0 \text{ in } \Omega.$$
(11)

2 Coupled variational systems

$$\varphi : \mathbb{R} \to 2^{\mathbb{R}} \text{ and } g : \mathbb{R} \to \mathbb{R} \text{ are nonlinear maps satisfying} $vg(v) - \xi^2 \ge 0, \ \forall v \in \mathbb{R}, \ \forall \xi \in \varphi(v)$ (12)$$

and $g = \phi'$, i.e. g has a Fréchet differentiable potential.

 $\begin{array}{l} \mathcal{A} \text{ is the self-adjoint positive-definite operator generated by } (-\Delta) \\ \text{with zero boundary conditions and having the domain} \\ \mathcal{D}(\mathcal{A}) = \mathcal{W}^{2,2}(\Omega) \cap \overset{\circ}{\mathcal{W}}^{1,2}(\Omega). \text{ Introduce the spaces} \\ \mathcal{V}_0 = \mathcal{L}^2(\Omega), \mathcal{V}_1 = \mathcal{D}(\mathcal{A}^{1/2}) \text{ and } \mathcal{V}_2 = \mathcal{D}(\mathcal{A}) \text{ with} \\ (u, v)_s = (\mathcal{A}^{s/2}u, \mathcal{A}^{s/2}v), \forall u, v \in \mathcal{V}_s, s = 0, 1, 2, \end{array}$ (13)

as scalar product and $Y_s = V_{s+1} \times V_s$, $Z_s = V_{s+1}$, s = 0, 1, with the scalar product in Y_s given by

$$((u, v), (\bar{u}, \bar{v}))_{s} = (u, \bar{u})_{s+1} + (v, \bar{v})_{s}, \forall (u, v), (\bar{u}, \bar{v}) \in Y_{s}.$$
(14)

The weak form of (8), (9) is a *parameter-dependent hybrid system* consisting of a variational inequality and a variational equality of the type

$$\begin{aligned} (\dot{y} - A(q)y - B(q)\xi, \eta - y)_{Y_{-1},Y_1} + \Psi(\eta, q) - \Psi(y, q) &\geq 0, \\ w(t) &= C(q)y, \, \xi(t) \in \varphi(t, w(t), v(t), q), \forall \eta \in L^2(0, T; Y_1), \\ \text{a.e. on } (0, T), \end{aligned}$$
(15)

$$(\dot{z} - A_1(q)z - B_1(q)\zeta, \vartheta)_{Z_{-1}, Z_1} = 0, \qquad (17)$$

$$\begin{aligned} v(t) &= C_1(q)z, \qquad \zeta(t) \in g(t, w(t), v(t), q), \\ \forall \vartheta \in L^2(0, T; Z_1), \text{ a.a. on } (0, T). \end{aligned}$$
 (18)

Here $q \in Q$ is a parameter, (Q,d) is a metric space. For any $q \in Q$ we assume that

$$\begin{split} & \mathcal{A}(q) \in \mathcal{L}(Y_{1}, Y_{-1}), \mathcal{B}(q) \in \mathcal{L}(\Xi, Y_{-1}), \mathcal{C}(q) \in \mathcal{L}(Y_{-1}, W), \\ & \Psi(\cdot, q) : Y_{1} \rightarrow \mathbb{R}_{+}, \varphi(\cdot, \cdot, \cdot, q) : \mathbb{R}_{+} \times W \times \Upsilon \rightarrow 2^{\Xi}, \\ & \mathcal{A}_{1}(q) \in \mathcal{L}(Z_{1}, Z_{-1}), \mathcal{B}_{1}(q) \in \mathcal{L}(\mathcal{Z}, Z_{-1}), g(\cdot, \cdot, \cdot, q) : \mathbb{R}_{+} \times W \times \Upsilon \rightarrow \mathcal{Z} \\ & Y_{1}, Y_{-1}, Z_{1}, Z_{-1}, \Xi, W, \mathcal{Z}, \Upsilon \quad \text{are real Hilbert spaces.} \end{split}$$

A pair $\{y(\cdot), z(\cdot)\} \in L^2(0, T; Y_1) \times L^2(0, T; Z_1)$ is said to be a *solution* of (15)-(18) on (0, T) if $\{\dot{y}(\cdot), \dot{z}(\cdot)\} \in L^2(0, T; Y_{-1}) \times L^2(0, T; Z_{-1})$ and there exists a pair $\{\xi(\cdot), \zeta(\cdot)\} \in L^2(0, T; \Xi) \times L^2(0, T; Z)$ such that $\{y(\cdot), z(\cdot), \xi(\cdot), \zeta(\cdot)\}$ satisfies (15)-(18) for a.e. $t \in (0, T)$ and $\int_0^T \Psi(y(t), q) dt < +\infty$. We assume that for any T > 0 such solutions exist.

3 Observations for bifurcations

Definition 1

Suppose that $\{S_{\alpha}\}, \{\tilde{S}_{\alpha}\}, \{R_{\alpha}\}$ and $\{\tilde{R}_{\alpha}\}$ are scales of real Hilbert spaces (observation and output spaces, respectively) and $D_{\alpha} \in \mathcal{L}(Y_{1}, S_{\alpha}), E_{\alpha} \in \mathcal{L}(\Xi, S_{\alpha}), \tilde{D}_{\alpha} \in \mathcal{L}(Z_{1}, \tilde{S}_{\alpha}), \tilde{E}_{\alpha} \in \mathcal{L}(Z, \tilde{R}_{\alpha}), M_{\alpha} \in \mathcal{L}(Y_{1}, R_{\alpha}), N_{\alpha} \in \mathcal{L}(\Xi, R_{\alpha}), \tilde{M}_{\alpha} \in \mathcal{L}(Z_{1}, \tilde{R}_{\alpha})$ and $\tilde{N}_{\alpha} \in \mathcal{L}(Z, \tilde{R}_{\alpha})$ are scales of linear operators (observation and output operators, respectively).

If $\{y(\cdot), z(\cdot), \xi(\cdot), \zeta(\cdot)\}$ is a response of (15)-(18) and $\alpha, \tilde{\alpha}, \beta, \tilde{\beta} \in \mathbb{R}$, are arbitrary scale parameters the function

$$s(\cdot, \alpha, \tilde{\alpha}) = (D_{\alpha}y(\cdot) + E_{\alpha}\xi(\cdot), \tilde{D}_{\tilde{\alpha}}z(\cdot) + \tilde{E}_{\tilde{\alpha}}\zeta(\cdot))$$
(19)

is called *observation (measurement* or *time series)* and the function

$$\mathbf{r}(\cdot,\beta,\tilde{\beta}) = \left(M_{\beta}\mathbf{y}(\cdot) + N_{p}\xi(\cdot), \tilde{M}_{\tilde{\beta}}\mathbf{z}(\cdot) + \tilde{N}_{\tilde{\beta}}\zeta(\cdot)\right),$$
(20)

is called *(unobservable)* output of (15)-(18).

3 Observations for bifurcations

Definition 1 (continued)

For two responses
$$\{y_i(\cdot), z_i(\cdot), \xi_i(\cdot), \zeta_i(\cdot)\}, i = 1, 2$$
, (21)

of (15)-(18) and arbitrary scale parameters $\alpha, \tilde{\alpha}, \beta, \tilde{\beta} \in \mathbb{R}$ we define the deviations

$$\Delta y(\cdot) = y_1(\cdot) - y_2(\cdot), \quad \Delta z(\cdot) = z_1(\cdot) - z_2(\cdot),$$

$$\Delta \xi(\cdot) = \xi_1(\cdot) - \xi_2(\cdot), \quad \Delta \zeta(\cdot) = \zeta_1(\cdot) - \zeta_2(\cdot), \quad (22)$$

$$\Delta s(\cdot, \alpha)^{2} = \|D_{\alpha} \Delta y(\cdot) + E_{\alpha} \Delta \xi(\cdot)\|_{\mathcal{S}_{\alpha}}^{2},$$

$$\Delta \tilde{s}(\cdot, \tilde{\alpha})^{2} = \|\tilde{D}_{\tilde{\alpha}} \Delta z(\cdot) + \tilde{E}_{\tilde{\alpha}} \Delta \zeta(\cdot)\|_{\tilde{\mathcal{S}}_{\tilde{\alpha}}}^{2},$$
(23)

$$\Delta r(\cdot,\beta)^{2} = \|M_{\beta}\Delta y(\cdot) + N_{\beta}\Delta\xi(\cdot)\|_{R_{\beta}}^{2},$$

$$\Delta \tilde{r}(\cdot,\tilde{\beta})^{2} = \|\tilde{M}_{\tilde{\beta}}\Delta z(\cdot) + \tilde{N}_{\tilde{\beta}}\Delta\zeta(\cdot)\|_{\tilde{R}_{\tilde{\beta}}}^{2},$$
 (24)

3 Observations for bifurcations

Definition 2

Suppose that a > 0, b > 0(a < b) and $t_1 > 0$ are numbers. The observation (19) is determining for the bifurcation "loss of (a, b, t_1) -stability" of the output (20) at $q = q^*$ if there exist continuous near q^* real-valued functions $\alpha(\cdot), \tilde{\alpha}(\cdot), \beta(\cdot)$ and $\tilde{\beta}(\cdot)$ with the properties: a) For $q = q_1$ the observation (19) with $\alpha = \alpha(q_1), \tilde{\alpha} = \tilde{\alpha}(q_1)$ is determining for the (a, b, t_1) -stability of the output (20) with $\beta = \beta(q_1), \tilde{\beta} = \tilde{\beta}(q_1)$, i.e., there exists an $\varepsilon_1 = \varepsilon_1(q_1) > 0$ such that for arbitrary two responses (21) and their deviations (22) - (24) which satisfy

$$\Delta r(0, \beta(q_1))^2 + \Delta \tilde{r}(0, \tilde{\beta}(q_1))^2 < a$$
 (25)

the observation property

$$\int_{0}^{t^{*}} [\Delta s(t, \alpha(q_{1}))^{2} + \Delta \tilde{s}(t, \tilde{\alpha}(q_{1}))^{2}] dt < \varepsilon_{1}$$
(26)

for a time $t^* \in (0, t_1)$ implies the output property $\Delta r(t, \beta(q_1))^2 + \Delta \tilde{r}(t, \tilde{\beta}(q_1))^2 < b$, $\forall t \in (0, t_1)$.

Definition 2 (continued)

b) For $q = q_2$ the observation (19) with $\alpha = \alpha(q_2), \tilde{\alpha} = \tilde{\alpha}(q_2)$ is determining for the (a, b, t_1) -instability of the output (20) with $\beta = \beta(q_2), \tilde{\beta} = \tilde{\beta}(q_2)$, i.e., there exists an $\varepsilon_2 = \varepsilon_2(q_2) > 0$ such that for arbitrary two responses (21) and their deviations (22) – (24) which satisfy (25) the observation property

$$\int_{0}^{t^{*}} [\Delta \, s(t, lpha(q_{2}))^{2} + \Delta \, \widetilde{s}(t, \widetilde{lpha}(q_{2}))^{2}] dt \geq arepsilon_{2}$$

for a time $t^* \in (0, t_1)$ implies the output property

$$\Delta r(t^*, \beta(q_2))^2 + \Delta \tilde{r}(t^*, \tilde{\beta}(q_2))^2 \geq b$$
.

Definition 3

Suppose that $q \in Q$ is arbitrary and $\alpha, \tilde{\alpha}, \beta, \tilde{\beta} \in \mathbb{R}, a > 0$ are arbitrary numbers. The observation (19) is *determining* for the *a-convergence* of the output (20) if for any two responses (21) of (15) – (18) and their deviations (22) – (24) from

$$\int_{t}^{t+1} [\Delta s(\tau, \alpha)^{2} + \Delta \tilde{s}(\tau, \tilde{\alpha})^{2}] d\tau \to 0$$
for $t \to +\infty$ it follows that
$$\limsup_{t \to +\infty} [\Delta r(t, \beta)^{2} + \Delta \tilde{r}(t, \tilde{\beta})^{2}] \leq a.$$
(28)

4 Frequency-domain conditions for determining observations

4.1 Description of the uncertainty nonlinear part

Consider the system (15) – (18) with arbitrary but fixed $q \in Q$. Suppose that $F(\cdot, \cdot, q)$ and $G(\cdot, \cdot, q)$ are quadratic forms on $Y_1 \times \Xi$. The *class* $\mathfrak{N}(F, G)$ of nonlinearities for (15) consists of all set-valued maps

$$\varphi(\cdot,\cdot,\cdot,q):\mathbb{R}_+\times W\times \Upsilon\to 2^{\Xi}$$
⁽²⁹⁾

satisfying the following property: For any sufficiently large $t_0, T, 0 < t_0 < T$, and any pairs of functions $y_1(\cdot), y_2(\cdot) \in L^2(0, T; Y_1), z_1(\cdot), z_2(\cdot) \in L^2(0, T; Z_1)$ and $\xi_1(\cdot), \xi_2(\cdot) \in L^2(0, T; \Xi)$ with

$$\xi_i(t) \in \varphi(t, C(q)y_i(t), C_1(q)z_i(t), q), \quad i = 1, 2, \quad \text{a.a.} \ t \in [0, T], \quad (30)$$

and $\|C_1(q)z_i(t)\|_{\Upsilon} \leq \Delta$, i = 1, 2, a.a. $t \in [t_0, T]$, (31) where $\Delta > 0$ is a small number depending on the second subsystem (17), (18), it follows that

$$F(y_1(t) - y_2(t), \xi_1(t) - \xi_2(t), q) \ge 0$$
 a.a. $t \in [t_0, T]$. (32)

4 Frequency-domain conditions for determining observations

There exist a continuous function $\Phi: W \to \mathbb{R}$ (generalized potential) and numbers $\lambda = \lambda(q) > 0$ and $\gamma = \gamma(q) > 0$ such that

$$\begin{split} &\int_{s}^{t} G(y_{1}(\tau) - y_{2}(\tau), \xi_{1}(\tau) - \xi_{2}(\tau), q) d\tau \\ &\geq \frac{1}{2} [\Phi(C(q)y_{1}(t) - C(q)y_{2}(t)) - \Phi(C(q)y_{1}(s) - C(q)y_{2}(s))] \\ &+ \lambda \int_{s}^{t} \Phi(C(q)y_{1}(\tau) - C(q)y_{2}(\tau)) d\tau \quad \text{for all} \quad s, t \in [t_{0}, T], s \leq t, \end{split}$$

and

$$\Phi(C(q)y_1(t) - C(q)y_2(t)) \ge \gamma \|C(q)y_1(t) - C(q)y_2(t)\|_W^2,$$

a.a. $t \in [t_0, T].$ (33)

4.2 Assumptions for the existence of determining observers

Let T > 0 be an arbitrary number, $L^2(0, T; Y_j), j = 1, 0, -1$, measurable spaces with norm $||y(\cdot)||_{2,j} = (\int_0^T ||y(t)||_j^2 dt)^{1/2}$. Let \mathfrak{W}_T be the space of functions $y(\cdot) \in L^2(0, T; Y_1)$ for which $\dot{y}(\cdot) \in L^2(0, T; Y_{-1})$ equipped with the norm

$$\|y(\cdot)\|_{\mathfrak{W}_{\tau}} = (\|y(\cdot)\|_{2,1}^2 + \|\dot{y}(\cdot)\|_{2,-1}^2)^{1/2}$$
(34)

(A1) There exists a number $\lambda = \lambda(q) > 0$ such that for any T > 0 and any element $f \in L^2(0, T; Y_{-1})$ the problem

$$\dot{y} = (A(q) + \lambda I)y + f(t), y(0) = y_0,$$
 (35)

is *well-posed*, i.e., for arbitrary $y_0 \in Y_0$, $f(\cdot) \in L^2(0, T; Y_{-1})$ there exists a unique solution $y(\cdot) \in \mathfrak{W}_T$ satisfying (36) and depending continuously on the initial data, i.e., $\|y(\cdot)\|_{\mathfrak{W}_T}^2 \leq c_1 \|y_0\|_0^2 + c_2 \|f(\cdot)\|_{2,-1}^2$, where $c_1 > 0$ and $c_2 > 0$ are some constants.

(A1) (continued)

Furthermore, any solution of $\dot{y} = (A(q) + \lambda I)y$, $y(0) = y_0$, is exponentially decreasing for $t \to +\infty$, i.e., there exist constants $c_3 > 0$ and $\varepsilon > 0$ such that $||y(t)||_0 \le c_3 e^{-\varepsilon t} ||y_0||_0$, t > 0.

(A2) There exists a number $\lambda = \lambda(q) > 0$ such that the operator $A(q) + \lambda I \in \mathcal{L}(Y_1, Y_{-1})$ is *regular*, i.e., for any $T > 0, y_0 \in Y_1, z_T \in Y_1$ and $f \in L^2(0, T; Y_0)$ the solutions of the *direct problem*

$$\dot{y} = (A(q) + \lambda I)y + f(t), y(0) = y_0,$$

and of the associated dual problem

$$\dot{z} = -(A(q) + \lambda I)^* z + f(t), z(T) = z_T,$$

are strongly continuous in t in the norm of Y_1 .

4 Frequency-domain conditions for determining observations

(A3) There exist numbers $\lambda = \lambda(q) > 0$, $\delta = \delta(q) > 0$ and $\alpha = \alpha(q)$ such that the following two properties hold:

a)
$$F^{c}(y,\xi,q) + G^{c}(y,\xi,q) - \delta \|D_{\alpha}^{c}y + E_{\alpha}^{c}\xi\|_{S_{\alpha}^{c}}^{2} \leq 0,$$

$$\forall (y,\xi) \in Y_{1}^{c} \times \Xi^{c} \exists \omega \in \mathbb{R} : i\omega y = (A^{c}(q) + \lambda I^{c})y + B^{c}(q)\xi; \quad (36)$$

b) The functional

$$J(y(\cdot),\xi(\cdot)) = \int_0^\infty [F^c(y(\tau),\xi(\tau),q) + G^c(y(\tau),\xi(\tau),q) - \delta \|D^c_{\alpha}y(\tau) + E^c_{\alpha}\xi(\tau)\|^2_{S^c_{\alpha}}] d\tau$$
is bounded from above on the set

$$\mathfrak{M}_{y_0} = \{y(\cdot),\xi(\cdot): \dot{y} = (A^c(q) + \lambda I^c)y + B^c(q)\xi,$$

$$y(0) = y_0, y(\cdot) \in \mathfrak{W}^c_{\infty}, \ \xi(\cdot) \in L^2(0,\infty;\Xi^c) \quad \text{for any} \quad y_0 \in Y^c_0.$$
Here $F^c, G^c, D^c_{\alpha}, E^c_{\alpha}, A^c, I^c, B^c, S^c_{\alpha}, \mathfrak{W}^c_{\infty}, \Xi^c \text{ denote the usual}$
complexification of quadratic forms, linear operators and Hilbert spaces,

respectively.

Theorem 1

Suppose that there exist numbers $\lambda = \lambda(q) > 0$, $\delta = \delta(q) > 0$ and $\alpha = \alpha(q)$ such that the assumptions (A1) - (A3) are satisfied. Suppose also that for any solutions of (15) - (18) there are a time $t_0 > 0$ and a number $\Delta > 0$ such that (31) is fulfilled for any $T > t_0$. Then the observation

$$s(\cdot) = (D_{\alpha}y(\cdot) + E_{\alpha}\xi(\cdot), 0)$$
(37)

is determining for the output *a*-convergence in (15), (18) with respect to the output

$$r(\cdot) = w(\cdot) = C(q)y(\cdot), \qquad (38)$$

where a > 0 is a certain number depending on $\Psi(\cdot, q)$ in (15).

4.3 Completeness defect of the observation operators

The frequency-domain condition (A3) depends on embedding properties of the Sobolev spaces under consideration. Assume, for example, that $G \equiv 0, E_{\alpha} = 0$ and $F(y, \xi, q) = q_1 ||y||_0^2 - q_2 ||y||_1^2, (y, \xi) \in Y_0 \times \Xi$, where q_1 and q_2 are certain real constants and $q = (q_1, q_2) \in Q$. In order to verify (36) we introduce the frequency-domain characteristic $\chi(i\omega, q) = (i\omega I^c - A_{\lambda}^c(q))^{-1}B^c(q)$ for $\omega \in \mathbb{R}$ s.t. $i\omega \in \rho(A_{\lambda}^c(q))$, where $A_{\lambda}^c(q) = A^c(q) + \lambda I^c$. The frequency-domain condition (36) is satisfied if

$$q_1 \|\chi(i\omega,q)\xi\|_{Y_0^c}^2 - q_2 \|\chi(i\omega,q)\xi\|_{Y_1^c}^2 - \delta \|D_\alpha^c\chi(i\omega,q)\xi\|_{S_\alpha^c}^2 \le 0,$$

$$\forall \xi \in \Xi^c, \forall \omega \in \mathbb{R} : i\omega \in \rho(A_\lambda^c(q)).$$
(39)

4 Frequency-domain conditions for determining observations

Suppose that from the embedding $Y_1^c \subset Y_0^c \subset Y_{-1}^c$ and the properties of D_α we have the a priori estimate

$$\|v\|_{Y_0^c}^2 \le c_1 \|v\|_{Y_1^c}^2 + c_2 \varepsilon_{D_\alpha^c} \|D_\alpha^c v\|_{S_\alpha^c}^2 , \ \forall v \in Y_1^c,$$
(40)

where $c_1 > 0$ and $c_2 > 0$ are certain constants and

$$\varepsilon_{D_{\alpha}^{c}} = \varepsilon_{D_{\alpha}^{c}}(Y_{1}^{c}, Y_{0}^{c}) = \sup\{\|w\|_{Y_{0}^{c}} : w \in Y_{1}^{c}, D_{\alpha}^{c}w = 0, \|w\|_{Y_{1}^{c}} \le 1\}$$

is the *completeness defect* of the observation operator D_{α}^{c} with respect to the embedding $Y_{1}^{c} \subset Y_{0}^{c}$. It follows from (40) that the frequency-domain condition (39) is satisfied if

$$q_{1}c_{1}\|\chi(i\omega,q)\xi\|_{Y_{1}^{c}}^{2} - q_{2}\|\chi(i\omega,q)\xi\|_{Y_{1}^{c}}^{2} + q_{1}c_{2}\varepsilon_{D_{\alpha}^{c}}\|D_{\alpha}^{c}\chi(i\omega,q)\xi\|_{S_{\alpha}^{c}}^{2} - \delta\|D_{\alpha}^{c}\chi(i\omega,q)\xi\|_{S_{\alpha}^{c}}^{2} \leq 0, \quad \forall \xi \in \Xi^{c}, \quad \forall \omega \in \mathbb{R} : i\omega \in \rho\left(A_{\lambda}^{c}(q)\right).$$

$$(41)$$

For (41) it is sufficient that

$$q_1c_1-q_2 \leq 0 \quad \text{and} \quad q_1c_2\varepsilon_{D^c_\alpha}-\delta \leq 0.$$
 (42)

The inequalities (42) describe a subset in the space of parameters of the variational inequality and of the observation operator. The second condition from (42) is always satisfied if $\varepsilon_{D_{\alpha}^{c}}$ is sufficiently small. Suppose that $D_{\alpha}y = (\ell_{1}(y), \ldots, \ell_{k}(y))$, where $\ell_{i}: Y_{1} \to \mathbb{R}, i = 1, \ldots, k$, are continuous linear functionals and $Y_{1} = W^{s,2}(\Omega), Y_{0} = W^{\sigma,2}(\Omega)$ with $s > \sigma$. Then $\varepsilon_{D_{\alpha}^{c}} \approx c_{1}(\frac{c_{2}}{k})^{s-\sigma}$, i.e., the completeness defect of the observation operator D_{α} depends on the smoothness properties of the embedding $Y_{1}^{c} \subset Y_{0}^{c}$.

Let us consider the hybrid system (15) – (18) with $\Psi \equiv 0$ as a first order variational equation with a set-valued nonlinearity. For this we define the new variables

$$\mathbf{y} = (\mathbf{y}, \mathbf{z}), \quad \mathbf{w} = (\mathbf{w}, \mathbf{z}), \quad \boldsymbol{\xi} = (\xi, \zeta), \quad \boldsymbol{\eta} = (\eta, \vartheta),$$
(43)

the product spaces

$$\mathcal{Y}_i = Y_i \times Z_i, \ i = 1, 0, -1, \quad \mathcal{W} = \mathcal{W} \times \Upsilon, \quad \mathcal{U} = \Xi \times \mathcal{Z},$$
 (44)

the parameter-dependent operator matrices

$$\mathcal{A}(q) = \begin{bmatrix} A(q) & 0\\ 0 & A_1(q) \end{bmatrix}, \quad \mathcal{B}(q) = \begin{bmatrix} B(q)\\ B_1(q) \end{bmatrix}, \quad \mathcal{C}(q) = [\mathcal{C}(q), \mathcal{C}_1(q)], \quad (45)$$

and the nonlinear set-valued map

$$\varphi(\cdot,\cdot,q) = (\varphi(\cdot,\cdot,\cdot,q), \quad g(\cdot,\cdot,\cdot,q)) : \mathbb{R}_+ \times \mathcal{W} \to 2^{\Xi} \times \mathcal{Z}.$$
 (46)

Thus we can write the coupled system (15) - (18) as first order variational equation with set-valued nonlinearity in \mathcal{Y}_{-1} as

$$\dot{\mathbf{y}} = \mathcal{A}(q)\mathbf{y} + \mathcal{B}(q)\boldsymbol{\xi},$$
 (47)

$$\mathbf{w}(t) = \mathcal{C}(q)\mathbf{y}(t), \quad \boldsymbol{\xi}(t) \in \boldsymbol{\varphi}(t, \mathbf{w}(t), q).$$
 (48)

The scales of observation resp. output spaces for (47), (48) are

$$S_{\alpha} = S_{\alpha} \times \tilde{S}_{\tilde{\alpha}}, \quad \mathcal{R}_{\alpha} = R_{\alpha} \times \tilde{R}_{\tilde{\alpha}}, \quad \alpha = (\alpha, \tilde{\alpha}) \in \mathbb{R}^2,$$
 (49)

the scales of observation resp. output operators are

$$\mathcal{D}_{\alpha} = \begin{bmatrix} D_{\alpha} & 0\\ 0 & \tilde{D}_{\tilde{\alpha}} \end{bmatrix}, \quad \mathcal{E}_{\alpha} = \begin{bmatrix} E_{\alpha} & 0\\ 0 & \tilde{E}_{\tilde{\alpha}} \end{bmatrix}, \quad \mathcal{M}_{\alpha} = \begin{bmatrix} M_{\alpha} & 0\\ 0 & \tilde{M}_{\tilde{\alpha}} \end{bmatrix},$$
$$\mathcal{N}_{\alpha} = \begin{bmatrix} N_{\alpha} & 0\\ 0 & \tilde{N}_{\tilde{\alpha}} \end{bmatrix}. \tag{50}$$

It is clear that

$$\mathcal{D}_{\alpha} \in \mathcal{L}(\mathcal{Y}_{1}, \mathcal{S}_{\alpha}), \quad \mathcal{E}_{\alpha} \in \mathcal{L}(\mathcal{U}, \mathcal{S}_{\alpha}), \quad \mathcal{M}_{\alpha} \in \mathcal{L}(\mathcal{Y}_{1}, \mathcal{R}_{\alpha}), \\ \mathcal{N}_{\alpha} \in \mathcal{L}(\mathcal{U}, \mathcal{R}_{\alpha}), \quad \alpha \in \mathbb{R}^{2}.$$
 (51)

If $\{\mathbf{y}(\cdot), \boldsymbol{\xi}(\cdot)\}$ is a response of (47), (48) and $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{R}^2$ are arbitrary scale parameters the function

$$\mathbf{s}(\cdot, \boldsymbol{\alpha}) = \mathcal{D}_{\boldsymbol{\alpha}} \mathbf{y}(\cdot) + \mathcal{E}_{\boldsymbol{\alpha}} \, \boldsymbol{\xi}(\cdot) \tag{52}$$

is the observation and

$$\mathbf{r}(\cdot,\boldsymbol{\beta}) = \mathcal{M}_{\boldsymbol{\beta}}\mathbf{y}(\cdot) + \mathcal{N}_{\boldsymbol{\beta}}\boldsymbol{\xi}(\cdot)$$
(53)

is the output of (47), (48).

Definition 4

Suppose that \mathcal{F} und \mathcal{G} are quadratic forms on $\mathcal{Y}_1 \times \mathcal{U}$. The class of nonlinearities $\mathfrak{N}(\mathcal{F},\mathcal{G})$ for (47), (48) defined by $\mathcal{F}(\cdot,\cdot,q)$ and $\mathcal{G}(\cdot,\cdot,q)$ consists of all maps (46) such that the following conditions are satisfied: For any T > 0 and any two functions $\mathbf{y}(\cdot) \in L^2(0, T; Y_1)$ and $\boldsymbol{\xi}(\cdot) \in L^2(0, T; \mathcal{U})$ with

$$\boldsymbol{\xi}(t) \in \boldsymbol{\varphi}(t, \mathcal{C}(q) \mathbf{y}(t), q), \quad \text{a.a. } t \in [0, T],$$
 (54)

it follows that

$$\mathcal{F}(\mathbf{y}(t), \boldsymbol{\xi}(t), q) \ge 0, \quad \text{a.a. } t \in [0, T],$$
(55)

and there exists a continuous function $\Phi:\mathcal{Y}_1\to\mathbb{R}$ such that

$$\int_{s}^{t} \mathcal{G}(\mathbf{y}(\tau), \boldsymbol{\xi}(t), q) d\tau \ge \Phi(\mathcal{C}(q)\mathbf{y}(t)) - \Phi(\mathcal{C}(q)\mathbf{y}(s))$$
for all $0 \le s < t \le T$.
$$(56)$$

In the sequel we need the following assumptions for any $q \in Q$: (A4) The operator $\mathcal{A}(q) \in \mathcal{L}(\mathcal{Y}_1, \mathcal{Y}_{-1})$ is regular, i.e., for any T > 0, $\mathbf{y}_0 \in \mathcal{Y}_1, \Psi_T \in \mathcal{Y}_1$ and $\mathbf{f} \in L^2(0, T; \mathcal{Y}_0)$ the solutions of the direct problem

$$\dot{\mathbf{y}}=\mathcal{A}(q)\mathbf{y}+\mathbf{f}(t), \hspace{1em} \mathbf{y}(0)=\mathbf{y}_{0}, \hspace{1em} ext{a.a.} \hspace{1em} t\in[0,T],$$

and of the dual problem

$$\dot{\Psi}=-\mathcal{A}^*(q)\Psi+\mathbf{f}(t), \hspace{1em} \Psi(\mathcal{T})=\Psi_\mathcal{T}, \hspace{1em} ext{a.a.} \hspace{1em} t\in [0,\mathcal{T}],$$

are strongly continuous in t in the norm of \mathcal{Y}_1 .

(A5) The pair $(\mathcal{A}(q), \mathcal{B}(q))$ is L^2 -controllable, i.e., for arbitrary $\mathbf{y}_0 \in \mathcal{Y}_0$ there exists a control $\boldsymbol{\xi}(\cdot) \in L^2(0, \infty; \mathcal{U})$ such that the problem

$$\dot{ extbf{y}} = \mathcal{A}(q) extbf{y} + \mathcal{B}(q) oldsymbol{\xi}, \quad extbf{y}(0) = extbf{y}_0$$

is well-posed on $[0, +\infty)$.

Definition 5

The variational equation (47), (48) is said to be *absolutely dichotomic in* the class $\mathfrak{N}(\mathcal{F},\mathcal{G})$ with respect to the output $\mathbf{r}(\cdot,\beta)$ from (53) if for any response $\{\mathbf{y}(\cdot), \boldsymbol{\xi}(\cdot)\}$ of (47), (48) with $\mathbf{y}(0) = \mathbf{y}_0, \boldsymbol{\xi}(0) = \boldsymbol{\xi}_0$ the following is true:

Either $\mathbf{y}(\cdot)$ is unbounded on $[0, \infty)$ in the \mathcal{Y}_0 -norm or $\mathbf{y}(\cdot)$ is bounded in \mathcal{Y}_0 in this norm and there exist constants c_1 and c_2 (which depend only on $\mathcal{A}(q), \mathcal{B}(q)$ and $\mathfrak{N}(\mathcal{F}, \mathcal{G})$) such that

$$\|\mathcal{M}_{\boldsymbol{\beta}} \mathbf{y}(\cdot) + \mathcal{E}_{\boldsymbol{\beta}} \boldsymbol{\xi}(\cdot)\|_{2,\mathcal{R}_{\boldsymbol{\beta}}}^2 \leq c_1(\|\mathbf{y}_0\|_{\mathcal{Y}_0}^2 + c_2).$$

Theorem 2

∀(י

Suppose that $\varphi \in \mathfrak{N}(\mathcal{F},\mathcal{G})$ and that for the operators $\mathcal{A}(q)$ and $\mathcal{B}(q)$ the assumptions (A4) and (A5) are satisfied. Suppose also that there exists a $\mu > 0$ such that the frequency-domain condition

$$\mathcal{F}^{c}(\mathbf{y}, \boldsymbol{\xi}, q) + \mathcal{G}^{c}(\mathbf{y}, \boldsymbol{\xi}, q) - \mu \| \mathcal{M}^{c}_{\boldsymbol{\beta}} \mathbf{y} + \mathcal{E}^{c}_{\boldsymbol{\beta}} \boldsymbol{\xi} \|_{\mathcal{R}_{\boldsymbol{\beta}}}^{2} \leq 0,$$

$$\mathbf{y}, \boldsymbol{\xi}) \in \mathcal{Y}^{c}_{1} \times \mathcal{U}^{c} : \exists \, \omega \in \mathbb{R} \quad \text{with} \quad i \omega \mathbf{y} = \mathcal{A}^{c}(q) \mathbf{y} + \mathcal{B}^{c}(q) \boldsymbol{\xi}$$

is satisfied and the functional

$$J(\mathbf{y}(\cdot), \boldsymbol{\xi}(\cdot), q) = \int_{0}^{\infty} [\mathcal{F}^{c}(\mathbf{y}(\tau), \boldsymbol{\xi}(\tau), q) + \qquad (57)$$

$$\mathcal{G}^{c}(\mathbf{y}(\tau), \boldsymbol{\xi}(\tau), q) - \mu \| \mathcal{M}_{\beta^{c}} \mathbf{y}(\tau) + \mathcal{E}_{\beta}^{c} \boldsymbol{\xi}(\tau) \|_{\mathcal{R}_{\beta}^{c}}^{2}] d\tau$$

Theorem 2 (continued)

is bounded from above on the set

$$\begin{split} \mathfrak{M}_{\mathbf{y}_0} &= \{\mathbf{y}(\cdot), \boldsymbol{\xi}(\cdot) : \dot{\mathbf{y}} = \mathcal{A}^c(q)\mathbf{y} + \mathcal{B}^c(q)\boldsymbol{\xi}, \mathbf{y}(0) = \mathbf{y}_0, \\ \mathbf{y}(\cdot) &\in \mathfrak{W}_{\infty}^c, \quad \boldsymbol{\xi}(\cdot) \in L^2(0,\infty;\mathcal{U}^c)\} \end{split}$$

for any $\mathbf{y}_0 \in \mathcal{Y}_0^c$. Assume additionally that any potential Φ from the class $\mathfrak{N}(\mathcal{F}, \mathcal{G})$ is nonnegative and there exists a constant c > 0 such that

$$\Phi(\mathcal{C}(q)\mathbf{y}) \leq c \|\mathbf{y}\|_{\mathcal{Y}_0}^2\,,\quad orall \mathbf{y}\in\mathcal{Y}_0.$$

Then the equation (47), (48) is absolutely dichotomic in the class $\mathfrak{N}(\mathcal{F}, \mathcal{G})$ with respect to the output $\mathbf{r}(\cdot, \boldsymbol{\beta})$ from (53).

- Andrews, K. T., Kuttler, K. L. and M. Shillor: On the dynamic behaviour of a thermoviscoelastic body in frictional contact with a rigid obstacle. Euro. Jnl. of Applied Mathematics (1997), 8, 417 – 436.
- Kalinichenko, D. Yu., Skopinov, S. N. and V. Reitmann: Stability and bifurcations on a finite time interval in variational inequalities. Differential Equations, Vol. 48, 13, 1 – 12, 2012.
- Kalinichenko, D. Yu., Skopinov, S. N. and V. Reitmann: Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion. Discrete and Continuous Dynamical Systems – Supplement, 407 – 414, 2013.
- Reitmann, V.: Frequency domain conditions for the existence of almost periodic solutions in evolutionary variational inequalities. Intern.
 Workshop on the Foundations of Nonautonomous Dynamical Systems, Friedrichsdorf am Taunus, 2003, Abstracts.

Thank you for your attention!