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1 Thermoviso-elastoplasti ontat

1.1 The mehanial model

measurements rigid moving ylinder

Γ
N

Γ
C

- free and moving boundary

f

N

v

0

thermoviso-elastoplasti

material

Γ
D

1.2 Notation

Suppose Ω ⊂ R
m

is a domain, Γ = ∂Ω is the pieewise Lipshitz

ontinuous boundary divided into the three disjunt parts Γ
D

, Γ
N

and Γ
C

.

Assume that x = (x1, . . . , xm) is the loation in Ω, t ∈ R+ is the time,

n = (n1, . . . , nm) is the unit normal to Γ, u(x , t) = (u1(x , t), . . . , um(x , t))
are the displaements, Θ = Θ(x , t) is the temperature, σ = (σij) is the
stress tensor, f

A

= (f 1
A

(x , t), . . . , f m
A

(x , t)) are the body fores in Ω and

κ = κ(x , t) is the density of heat soures.
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1 Thermoviso-elastoplasti ontat

1.3 Elastoplasti and heat equations

The equations of motion and heat transfer are given by

[σkj (δi
k

+ u

i

,k)],j + f

i

A

= ü

i

in Ω× (0,T ) , (1)

Θ̇− (k ijΘ,j),i = −

ij

u

i ,j + κ in Ω× (0,T ) , (2)

where 

ij = 

ij(x) and k

ij = k

ij(x) are the tensors of thermal expansion

and thermal ondutivity, respetively, and σ is de�ned by the

thermoviso-elastoplasti stress-strain relation

σij = a

ijkl

u

k,l + b

ijkl

u̇

k,l − 

ijΘ+ P ij [u
k,l ,Θ] in Ω× (0,T ) , (3)

where (aijkl ) and (bijkl ) are the tensors of elasti and visosity oe�ients,

respetively, {P ij [·,Θ]}Θ>0

is the plasti part given by Θ-dependent

hysteresis operators.
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1 Thermoviso-elastoplasti ontat

As boundary and initial onditions we have:

a) Presribed displaements and temperature

u = 0 on Γ
D

× (0,T ) ;

Θ = Θ
b

on (Γ
D

∪ Γ
N

)× (0,T ) ; (4)

u(·, 0) = u

0

, u̇(·, 0) = u

1

,Θ(·, 0) = Θ
0

inΩ ;

b) Presribed boundary fores

σijn
j

= f

i

N

on Γ
N

× (0,T ) , (5)

where f

N

= (f i
N

(x , t)) are the applied trations;

) Fritional stress and temperature on Γ
C

By Coulomb's law of dry frition

|σT | ≤ µ|σN |(1− δ|σN |)+ on Γ
C

× (0,T ) ,

|σT | < µ|σN |(1− δ|σN |)+ ⇒ u̇T = v

0

(stik zone) , (6)

|σT | = µ|σN |(1− δ|σN |)+ ⇒ u̇T = v

0

− λσT (slip zone) ,
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1 Thermoviso-elastoplasti ontat

k

ijΘ,inj = µ|σN |(1− δ|σN |)+s
C

(·, |u̇T − v

0

|)−

k

e

(Θ −Θ
R

) , (7)

where σN = σijn
i

n

j

and uN = u

i

n

i

are the normal omponents of σ and u

on Γ, respetively, σiT = σijn
j

− σN n

i

and u

i

T = u

i − uN n

i

are the

tangential omponents of σ and u on Γ, respetively, µ is the frition

oe�ient, v

0

is the veloity of the moving rigid body, δ is a positive

onstant, Θ
R

is the temperature of the rigid body, s

C

(·, r) is a presribed

distane funtion and k

e

is the oe�ient of heat exhange between

elastoplasti body and rigid body.
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2 Coupled variational systems

2.1 Sales of Hilbert spaes

A olletion of real Hilbert spaes {Hα}α∈R with salar produt (·, ·)α and

norm ‖ · ‖α is alled sale of Hilbert spaes if the following is true:

(i) For any α > β the spae Hα is ontinuously embedded into Hβ , i.e.

Hα ⊂ Hβ and there exists a 

1

> 0 suh that ‖h‖β ≤ 

1

‖h‖α, ∀ h ∈ Hα,

and Hα is dense in Hβ ;
(ii) For any α > 0 and h ∈ Hα the linear funtional (·, h)

0

on H

0

an be

ontinuously extended to a linear ontinuous funtional (·, h)−α,α on H−α

satisfying |(h
′

, h)−α,α| ≤ ‖h
′

‖−α‖h‖α, ∀ h
′

∈ H−α, ∀ h ∈ Hα. Any linear

ontinuous funtional ℓ on Hα has the form ℓ(h) = (h
′

, h)−α,α with some

h

′

∈ H−α, i.e., H−α is isomorphi to the spae of linear ontinuous

funtionals on Hα. From (i) it follows that for any α ∈ (β, γ) the spae Hα

is rigged by Hβ and Hγ , i.e., Hγ ⊂ Hα ⊂ Hβ with dense and ontinuous

embeddings.
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2 Coupled variational systems

Example 1

Suppose Ω ⊂ R
m

is a domain and N is an arbitrary natural number.

{H
(N)
α }α∈R is the sale of frational Sobolev spaes suh that

H

(N)
ℓ = W

ℓ,2(Ω) , ℓ = 0, 1, . . . ,N, with norms ‖u‖2
H

(N)
α

given by

∫

Ω
(|u|2 +

α
∑

|β|=1

|Dβ
u|2)dx =: ‖u‖2

W

α,2 ,

if α ≥ 0 integer,

‖u‖2
W

k,2 +
∑

|β|=k

∫

Ω

∫

Ω

|Dβ
u(x) − D

β
u(y)|2

|x − y |k+2λ
dxdy ,

if α = k + λ > 0 , k ≥ 0 integer, λ ∈ (0, 1),

sup

‖v‖
H

(N)
−α

=1

|

∫

Ω
u(x)v(x)dx | , if α < 0.
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2 Coupled variational systems

2.2 A simpli�ed ontat problem

Suppose Ω ⊂ R
m

is a bounded domain, ∂Ω is smooth, u = u(x , t) and
Θ = Θ(x , t) are the displaement and the temperature in the elasti body

satisfying the system

u

tt

+ 2εu
t

−∆u + αu = ξ(t), ξ(t) ∈ ϕ(Θ(t)) , (8)

Θ
t

− β∆Θ+ u − γζ(t) = 0, ζ(t) = g(Θ(t)) , (9)

with α, β, ε, γ onstants, and the boundary and initial onditions

u = 0 , Θ = 0 on ∂Ω× (0,T ) (10)

u(·, 0) = u

0

(·) , u̇(·, 0) = u

1

(·) ,Θ(·, 0) = Θ
0

in Ω. (11)
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2 Coupled variational systems

ϕ : R → 2

R
and g : R → R are nonlinear maps satisfying

vg(v)− ξ2 ≥ 0, ∀v ∈ R, ∀ξ ∈ ϕ(v) (12)

and g = φ′, i.e. g has a Fr�ehet di�erentiable potential.

A is the self-adjoint positive-de�nite operator generated by (−∆)
with zero boundary onditions and having the domain

D(A) = W

2,2(Ω)∩
◦

W

1,2 (Ω). Introdue the spaes

V
0

= L

2(Ω),V
1

= D(A1/2) and V
2

= D(A) with
(u, v)

s

= (As/2
u,As/2

v) , ∀u, v ∈ V
s

, s = 0, 1, 2 , (13)

as salar produt and Y

s

= V
s+1

× V
s

, Z
s

= V
s+1

, s = 0, 1 , with the

salar produt in Y

s

given by

((u, v), (ū, v̄ ))
s

= (u, ū)
s+1

+ (v , v̄ )
s

,∀(u, v), (ū, v̄) ∈ Y

s

. (14)
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3 Observations for bifurations

The weak form of (8), (9) is a parameter-dependent hybrid system

onsisting of a variational inequality and a variational equality of the type

(ẏ − A(q)y − B(q)ξ, η − y)
Y−1

,Y
1

+ Ψ(η, q) −Ψ(y , q) ≥ 0 , (15)

w(t) = C (q)y , ξ(t) ∈ ϕ(t,w(t), v(t), q) ,∀η ∈ L

2(0,T ;Y
1

), (16)

a.e. on (0,T ),

(ż − A

1

(q)z − B

1

(q) ζ, ϑ)
Z−1

,Z
1

= 0 , (17)

v(t) = C

1

(q)z , ζ(t) ∈ g(t,w(t), v(t), q) ,

∀ϑ ∈ L

2(0,T ;Z
1

), a.a. on (0,T ) . (18)
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3 Observations for bifurations

Here q ∈ Q is a parameter, (Q, d) is a metri spae.

For any q ∈ Q we assume that

A(q) ∈ L(Y
1

,Y−1

),B(q) ∈ L(Ξ,Y−1

),C (q) ∈ L(Y−1

,W ),

Ψ(·, q) : Y
1

→ R+, ϕ(·, ·, ·, q) : R+ ×W ×Υ → 2

Ξ,

A

1

(q) ∈ L(Z
1

,Z−1

),B
1

(q) ∈ L(Z,Z−1

), g(·, ·, ·, q) : R+ ×W ×Υ → Z,

Y

1

,Y−1

,Z
1

,Z−1

,Ξ,W ,Z,Υ are real Hilbert spaes.

A pair {y(·), z(·)} ∈ L

2(0,T ;Y
1

)× L

2(0,T ;Z
1

) is said to be a solution of

(15)-(18) on (0,T ) if {ẏ(·), ż(·)} ∈ L

2(0,T ;Y−1

)× L

2(0,T ;Z−1

) and
there exists a pair {ξ(·), ζ(·)} ∈ L

2(0,T ; Ξ)× L

2(0,T ;Z) suh that

{y(·), z(·), ξ(·), ζ(·)} satis�es (15)-(18) for a.e. t ∈ (0,T ) and
∫

T

0

Ψ(y(t), q)dt < +∞. We assume that for any T > 0 suh solutions

exist.

D.Kalinihenko, V. Reitmann (SPbSU) Bifuration on a �nite time interval 11 / 35



3 Observations for bifurations

De�nition 1

Suppose that {Sα}, {S̃α}, {Rα} and {R̃α} are sales of real Hilbert spaes

(observation and output spaes, respetively) and Dα ∈ L(Y
1

,Sα),
Eα ∈ L(Ξ,Sα), D̃α ∈ L(Z

1

, S̃α), Ẽα ∈ L(Z, R̃α),
Mα ∈ L(Y

1

,Rα),Nα ∈ L(Ξ,Rα), M̃α ∈ L(Z
1

, R̃α) and Ñα ∈ L(Z, R̃α)
are sales of linear operators (observation and output operators,

respetively).

If {y(·), z(·), ξ(·), ζ(·)} is a response of (15)-(18) and α, α̃, β, β̃ ∈ R, are

arbitrary sale parameters the funtion

s(·, α, α̃) = (Dαy(·) + Eαξ(·), D̃α̃z(·) + Ẽα̃ζ(·)) (19)

is alled observation (measurement or time series) and the funtion

r(·, β, β̃) = (Mβy(·) + N

p

ξ(·), M̃β̃z(·) + Ñβ̃ζ(·)) , (20)

is alled (unobservable) output of (15)-(18).
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3 Observations for bifurations

De�nition 1 (ontinued)

For two responses

{y
i

(·), z
i

(·), ξ
i

(·), ζ
i

(·)} , i = 1, 2 , (21)

of (15)-(18) and arbitrary sale parameters α, α̃, β, β̃ ∈ R we de�ne the

deviations

∆y(·) = y

1

(·)− y

2

(·), ∆ z(·) = z

1

(·) − z

2

(·),

∆ ξ(·) = ξ
1

(·)− ξ
2

(·), ∆ ζ(·) = ζ
1

(·)− ζ
2

(·) , (22)

∆ s(·, α)2 = ‖Dα∆ y(·) + Eα∆ ξ(·)‖2
Sα

,

∆ s̃(·, α̃)2 = ‖D̃α̃∆ z(·) + Ẽα̃∆ ζ(·)‖2
S̃α̃

, (23)

∆ r(·, β)2 = ‖Mβ∆ y(·) + Nβ∆ ξ(·)‖2
Rβ

,

∆r̃(·, β̃)2 = ‖M̃β̃∆z(·) + Ñβ̃∆ζ(·)‖2
R̃

β̃

, (24)
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3 Observations for bifurations

De�nition 2

Suppose that a > 0, b > 0(a < b) and t

1

> 0 are numbers. The

observation (19) is determining for the bifuration �loss of

(a, b, t
1

)-stability� of the output (20) at q = q

∗
if there exist ontinuous

near q

∗
real-valued funtions α(·), α̃(·), β(·) and β̃(·) with the properties:

a) For q = q

1

the observation (19) with α = α(q
1

), α̃ = α̃(q
1

) is
determining for the (a, b, t

1

)-stability of the output (20) with

β = β(q
1

), β̃ = β̃(q
1

), i.e., there exists an ε
1

= ε
1

(q
1

) > 0 suh that for

arbitrary two responses (21) and their deviations (22) - (24) whih satisfy

∆ r(0, β(q
1

))2 +∆ r̃(0, β̃(q
1

))2 < a (25)

the observation property

∫

t

∗

0

[∆ s(t, α(q
1

))2 +∆ s̃(t, α̃(q
1

))2]dt < ε
1

(26)

for a time t

∗ ∈ (0, t
1

) implies the output property

∆r(t, β(q
1

))2 +∆r̃(t, β̃(q
1

))2 < b , ∀ t ∈ (0, t
1

).
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3 Observations for bifurations

De�nition 2 (ontinued)

b) For q = q

2

the observation (19) with α = α(q
2

), α̃ = α̃(q
2

) is
determining for the (a, b, t

1

)-instability of the output (20) with

β = β(q
2

), β̃ = β̃(q
2

), i.e., there exists an ε
2

= ε
2

(q
2

) > 0 suh that for

arbitrary two responses (21) and their deviations (22) � (24) whih satisfy

(25) the observation property

∫

t

∗

0

[∆ s(t, α(q
2

))2 +∆ s̃(t, α̃(q
2

))2]dt ≥ ε
2

for a time t

∗ ∈ (0, t
1

) implies the output property

∆ r(t∗, β(q
2

))2 +∆ r̃(t∗, β̃(q
2

))2 ≥ b .
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3 Observations for bifurations

De�nition 3

Suppose that q ∈ Q is arbitrary and α, α̃, β, β̃ ∈ R, a > 0 are arbitrary

numbers. The observation (19) is determining for the a-onvergene of the

output (20) if for any two responses (21) of (15) � (18) and their

deviations (22) � (24) from

∫

t+1

t

[∆ s(τ, α)2 +∆ s̃(τ, α̃)2]dτ → 0 (27)

for t → +∞ it follows that

lim sup

t→+∞
[∆ r(t, β)2 +∆r̃(t, β̃)2] ≤ a . (28)
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4 Frequeny-domain onditions for determining observations

4.1 Desription of the unertainty nonlinear part

Consider the system (15) � (18) with arbitrary but �xed q ∈ Q. Suppose

that F (·, ·, q) and G (·, ·, q) are quadrati forms on Y

1

× Ξ. The lass

N(F ,G ) of nonlinearities for (15) onsists of all set-valued maps

ϕ(·, ·, ·, q) : R+ ×W ×Υ → 2

Ξ
(29)

satisfying the following property: For any su�iently large

t

0

,T , 0 < t

0

< T , and any pairs of funtions

y

1

(·), y
2

(·) ∈ L

2(0,T ;Y
1

), z
1

(·), z
2

(·) ∈ L

2(0,T ;Z
1

) and
ξ
1

(·), ξ
2

(·) ∈ L

2(0,T ; Ξ) with

ξ
i

(t) ∈ ϕ(t,C (q)y
i

(t),C
1

(q)z
i

(t), q), i = 1, 2, a.a. t ∈ [0,T ], (30)

and ‖C
1

(q)z
i

(t)‖Υ ≤ ∆, i = 1, 2, a.a. t ∈ [t
0

,T ], (31)

where ∆ > 0 is a small number depending on the seond subsystem (17),

(18), it follows that

F (y
1

(t)− y

2

(t), ξ
1

(t)− ξ
2

(t), q) ≥ 0 a.a. t ∈ [t
0

,T ] . (32)

D.Kalinihenko, V. Reitmann (SPbSU) Bifuration on a �nite time interval 17 / 35



4 Frequeny-domain onditions for determining observations

There exist a ontinuous funtion Φ : W → R (generalized potential) and

numbers λ = λ(q) > 0 and γ = γ(q) > 0 suh that

∫

t

s

G (y
1

(τ)− y

2

(τ), ξ
1

(τ)− ξ
2

(τ), q)dτ

≥
1

2

[Φ(C (q)y
1

(t)− C (q)y
2

(t))− Φ(C (q)y
1

(s)− C (q)y
2

(s))]

+λ

∫

t

s

Φ(C (q)y
1

(τ)− C (q)y
2

(τ))dτ for all s, t ∈ [t
0

,T ] , s ≤ t,

and

Φ(C (q)y
1

(t)− C (q)y
2

(t)) ≥ γ‖C (q)y
1

(t)− C (q)y
2

(t)‖2
W

,

a.a. t ∈ [t
0

,T ]. (33)
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4 Frequeny-domain onditions for determining observations

4.2 Assumptions for the existene of determining observers

Let T > 0 be an arbitrary number, L

2(0,T ;Y
j

) , j = 1, 0,−1, measurable

spaes with norm ‖y(·)‖
2,j = (

∫

T

0

‖y(t)‖2
j

dt)1/2. Let W
T

be the spae of

funtions y(·) ∈ L

2(0,T ;Y
1

) for whih ẏ(·) ∈ L

2(0,T ;Y−1

) equipped with

the norm

‖y(·)‖W
T

= (‖y(·)‖2
2,1 + ‖ẏ (·)‖2

2,−1

)1/2 (34)

(A1) There exists a number λ = λ(q) > 0 suh that for any T > 0 and

any element f ∈ L

2(0,T ;Y−1

) the problem

ẏ = (A(q) + λI )y + f (t), y(0) = y

0

, (35)

is well-posed, i.e., for arbitrary y

0

∈ Y

0

, f (·) ∈ L

2(0,T ;Y−1

) there exists a

unique solution y(·) ∈ W
T

satisfying (36) and depending ontinuously on

the initial data, i.e., ‖y(·)‖2
W
T

≤ 

1

‖y
0

‖2
0

+ 

2

‖f (·)‖2
2,−1

, where 

1

> 0 and



2

> 0 are some onstants.

D.Kalinihenko, V. Reitmann (SPbSU) Bifuration on a �nite time interval 19 / 35



4 Frequeny-domain onditions for determining observations

(A1) (ontinued)

Furthermore, any solution of ẏ = (A(q) + λI )y , y(0) = y

0

, is exponentially

dereasing for t → +∞, i.e., there exist onstants 

3

> 0 and ε > 0 suh

that ‖y(t)‖
0

≤ 

3

e

−εt‖y
0

‖
0

, t > 0.

(A2) There exists a number λ = λ(q) > 0 suh that the operator

A(q) + λI ∈ L(Y
1

,Y−1

) is regular, i.e., for any T > 0, y
0

∈ Y

1

, z
T

∈ Y

1

and f ∈ L

2(0,T ;Y
0

) the solutions of the diret problem

ẏ = (A(q) + λI )y + f (t), y(0) = y

0

,

and of the assoiated dual problem

ż = −(A(q) + λI )∗z + f (t), z(T ) = z

T

,

are strongly ontinuous in t in the norm of Y

1

.
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4 Frequeny-domain onditions for determining observations

(A3) There exist numbers λ = λ(q) > 0, δ = δ(q) > 0 and α = α(q) suh
that the following two properties hold:

a) F

(y , ξ, q) + G

(y , ξ, q) − δ‖D

αy + E



αξ‖
2

S



α
≤ 0 ,

∀(y , ξ) ∈ Y



1

× Ξ∃ω ∈ R : iωy = (A(q) + λI )y + B

(q)ξ ; (36)

b) The funtional

J(y(·), ξ(·)) =

∫ ∞

0

[F  (y(τ), ξ(τ), q) + G

(y(τ), ξ(τ), q) −

δ‖D

αy(τ) + E



αξ(τ)‖
2

S



α
] dτ

is bounded from above on the set

M
y

0

= {y(·), ξ(·) : ẏ = (A(q) + λI )y + B

(q)ξ,

y(0) = y

0

, y(·) ∈ W


∞ , ξ(·) ∈ L

2(0,∞; Ξ} for any y

0

∈ Y



0

.

Here F

 ,G  ,D

α,E


α,A
 , I  ,B ,Sα,W



∞,Ξ

denote the usual

omplexi�ation of quadrati forms, linear operators and Hilbert spaes,

respetively.
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4 Frequeny-domain onditions for determining observations

Theorem 1

Suppose that there exist numbers λ = λ(q) > 0, δ = δ(q) > 0 and

α = α(q) suh that the assumptions (A1) � (A3)are satis�ed. Suppose

also that for any solutions of (15) � (18) there are a time t

0

> 0 and a

number ∆ > 0 suh that (31) is ful�lled for any T > t

0

. Then the

observation

s(·) = (Dαy(·) + Eαξ(·), 0) (37)

is determining for the output a-onvergene in (15), (18) with respet to

the output

r(·) = w(·) = C (q)y(·) , (38)

where a > 0 is a ertain number depending on Ψ(·, q) in (15).
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4 Frequeny-domain onditions for determining observations

4.3 Completeness defet of the observation operators

The frequeny-domain ondition (A3) depends on embedding properties of

the Sobolev spaes under onsideration. Assume, for example, that

G ≡ 0,Eα = 0 and F (y , ξ, q) = q

1

‖y‖2
0

− q

2

‖y‖2
1

, (y , ξ) ∈ Y

0

× Ξ, where
q

1

and q

2

are ertain real onstants and q = (q
1

, q
2

) ∈ Q. In order to

verify (36) we introdue the frequeny-domain harateristi

χ(iω, q) = (iωI  − A



λ(q))
−1

B

(q) for ω ∈ R s.t. iω ∈ ρ(Aλ(q)), where
A



λ(q) = A

(q) + λI  . The frequeny-domain ondition (36) is satis�ed if

q

1

‖χ(iω, q)ξ‖2
Y



0

− q

2

‖χ(iω, q)ξ‖2
Y



1

− δ‖D

αχ(iω, q)ξ‖
2

S



α
≤ 0,

∀ξ ∈ Ξ ,∀ω ∈ R : iω ∈ ρ(Aλ(q)). (39)

D.Kalinihenko, V. Reitmann (SPbSU) Bifuration on a �nite time interval 23 / 35



4 Frequeny-domain onditions for determining observations

Suppose that from the embedding Y



1

⊂ Y



0

⊂ Y



−1

and the properties of

Dα we have the a priori estimate

‖v‖2
Y



0

≤ 

1

‖v‖2
Y



1

+ 

2

ε
D



α
‖D

αv‖
2

S



α
, ∀v ∈ Y



1

, (40)

where 

1

> 0 and 

2

> 0 are ertain onstants and

ε
D



α
= ε

D



α
(Y 

1

,Y 

0

) = sup{‖w‖
Y



0

: w ∈ Y



1

,D

αw = 0 , ‖w‖
Y



1

≤ 1}

is the ompleteness defet of the observation operator D



α with respet to

the embedding Y



1

⊂ Y



0

. It follows from (40) that the frequeny-domain

ondition (39) is satis�ed if

q

1



1

‖χ(iω, q)ξ‖2
Y



1

− q

2

‖χ(iω, q)ξ‖2
Y



1

+ q

1



2

ε
D



α
‖D

αχ(iω, q)ξ‖
2

S



α
−

δ‖D

αχ(iω, q)ξ‖
2

S



α
≤ 0, ∀ξ ∈ Ξ , ∀ω ∈ R : iω ∈ ρ (Aλ(q)) . (41)

For (41) it is su�ient that

q

1



1

− q

2

≤ 0 and q

1



2

ε
D



α
− δ ≤ 0 . (42)
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4 Frequeny-domain onditions for determining observations

The inequalities (42) desribe a subset in the spae of parameters of the

variational inequality and of the observation operator. The seond ondition

from (42) is always satis�ed if ε
D



α
is su�iently small. Suppose that

Dαy = (ℓ
1

(y), . . . , ℓ
k

(y)), where ℓ
i

: Y
1

→ R, i = 1, . . . , k , are ontinuous

linear funtionals and Y

1

= W

s,2(Ω),Y
0

= W

σ,2(Ω) with s > σ. Then

ε
D



α
≈ 

1

( 2
k

)s−σ
, i.e., the ompleteness defet of the observation operator

Dα depends on the smoothness properties of the embedding Y



1

⊂ Y



0

.
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5 Frequeny-domain onditions for observation stability

Let us onsider the hybrid system (15) � (18) with Ψ ≡ 0 as a �rst order

variational equation with a set-valued nonlinearity. For this we de�ne the

new variables

y = (y , z), w = (w , z), ξ = (ξ, ζ), η = (η, ϑ) , (43)

the produt spaes

Y
i

= Y

i

× Z

i

, i = 1, 0,−1, W = W ×Υ, U = Ξ×Z , (44)

the parameter-dependent operator matries

A(q) =

[

A(q) 0

0 A

1

(q)

]

, B(q) =

[

B(q)
B

1

(q)

]

, C(q) = [C (q),C
1

(q)] ,

(45)

and the nonlinear set-valued map

ϕ(·, ·, q) = (ϕ(·, ·, ·, q), g(·, ·, ·, q)) : R+ ×W → 2

Ξ ×Z . (46)
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5 Frequeny-domain onditions for observation stability

Thus we an write the oupled system (15) � (18) as �rst order variational

equation with set-valued nonlinearity in Y−1

as

ẏ = A(q)y + B(q)ξ , (47)

w(t) = C(q)y(t), ξ(t) ∈ ϕ (t,w(t), q). (48)

The sales of observation resp. output spaes for (47), (48) are

Sα = Sα × S̃α̃, Rα = Rα × R̃α̃, α = (α, α̃) ∈ R
2 , (49)

the sales of observation resp. output operators are

Dα =

[

Dα 0

0 D̃α̃

]

, Eα =

[

Eα 0

0 Ẽα̃

]

, Mα =

[

Mα 0

0 M̃α̃

]

,

Nα =

[

Nα 0

0 Ñα̃

]

. (50)
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5 Frequeny-domain onditions for observation stability

It is lear that

Dα ∈ L(Y
1

,Sα), Eα ∈ L(U ,Sα), Mα ∈ L(Y
1

,Rα),

Nα ∈ L(U ,Rα), α ∈ R
2 . (51)

If {y(·), ξ(·)} is a response of (47), (48) and α,β ∈ R
2

are

arbitrary sale parameters the funtion

s(·,α) = Dαy(·) + Eα ξ (·) (52)

is the observation and

r(·,β) = Mβy(·) +Nβξ(·) (53)

is the output of (47), (48).
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5 Frequeny-domain onditions for observation stability

De�nition 4

Suppose that F und G are quadrati forms on Y
1

× U . The lass of

nonlinearities N(F ,G) for (47), (48) de�ned by F(·, ·, q) and G(·, ·, q)
onsists of all maps (46) suh that the following onditions are satis�ed:

For any T > 0 and any two funtions y(·) ∈ L

2(0,T ;Y
1

) and
ξ(·) ∈ L

2(0,T ;U) with

ξ(t) ∈ ϕ(t, C(q)y(t), q), a.a. t ∈ [0,T ] , (54)

it follows that

F(y(t), ξ(t), q) ≥ 0, a.a. t ∈ [0,T ] , (55)

and there exists a ontinuous funtion Φ : Y
1

→ R suh that

∫

t

s

G(y(τ), ξ(t), q)dτ ≥ Φ(C(q)y(t))− Φ(C(q)y(s)) (56)

for all 0 ≤ s < t ≤ T .
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5 Frequeny-domain onditions for observation stability

In the sequel we need the following assumptions for any q ∈ Q:

(A4) The operator A(q) ∈ L(Y
1

,Y−1

) is regular, i.e., for any T > 0,

y

0

∈ Y
1

,Ψ
T

∈ Y
1

and f ∈ L

2(0,T ;Y
0

) the solutions of the diret problem

ẏ = A(q)y + f(t), y(0) = y

0

, a.a. t ∈ [0,T ],

and of the dual problem

Ψ̇ = −A∗(q)Ψ + f(t), Ψ(T ) = Ψ
T

, a.a. t ∈ [0,T ],

are strongly ontinuous in t in the norm of Y
1

.

(A5) The pair (A(q),B(q)) is L2-ontrollable, i.e., for arbitrary y
0

∈ Y
0

there exists a ontrol ξ(·) ∈ L

2(0,∞;U) suh that the problem

ẏ = A(q)y + B(q)ξ, y(0) = y

0

is well-posed on [0,+∞).
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5 Frequeny-domain onditions for observation stability

De�nition 5

The variational equation (47), (48) is said to be absolutely dihotomi in

the lass N(F ,G) with respet to the output r(·,β) from (53) if for any

response {y(·), ξ(·)} of (47), (48) with y(0) = y

0

, ξ(0) = ξ
0

the following

is true:

Either y(·) is unbounded on [0,∞) in the Y
0

-norm or y(·) is bounded in Y
0

in this norm and there exist onstants 

1

and 

2

(whih depend only on

A(q),B(q) and N(F ,G)) suh that

‖Mβ y(·) + Eβ ξ(·)‖2
2,Rβ

≤ 

1

(‖y
0

‖2Y
0

+ 

2

).
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5 Frequeny-domain onditions for observation stability

Theorem 2

Suppose that ϕ ∈ N(F ,G) and that for the operators A(q) and B(q) the
assumptions (A4) and (A5) are satis�ed. Suppose also that there exists a

µ > 0 suh that the frequeny-domain ondition

F(y, ξ, q) + G (y, ξ, q)− µ‖M

βy+ Eβ ξ‖2Rβ
≤ 0 ,

∀(y, ξ) ∈ Y

1

× U : ∃ω ∈ R with iωy = A(q)y + B(q)ξ

is satis�ed and the funtional

J(y(·), ξ(·), q) =

∫ ∞

0

[F (y(τ), ξ(τ), q) + (57)

G (y(τ), ξ(τ), q) − µ‖Mβy(τ) + Eβξ(τ)‖
2

R

β
]dτ
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5 Frequeny-domain onditions for observation stability

Theorem 2 (ontinued)

is bounded from above on the set

M
y

0

= {y(·), ξ(·) : ẏ = A(q)y + B(q)ξ, y(0) = y

0

,

y(·) ∈ W


∞ , ξ(·) ∈ L

2(0,∞;U )}

for any y

0

∈ Y

0

. Assume additionally that any potential Φ from the lass

N(F ,G) is nonnegative and there exists a onstant  > 0 suh that

Φ(C(q)y) ≤ ‖y‖2Y
0

, ∀y ∈ Y
0

.

Then the equation (47), (48) is absolutely dihotomi in the lass N(F ,G)
with respet to the output r(·,β) from (53).
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Thank you

for your attention!
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