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1. Basic tools for cocycle theory
Let (@, d) be a complete metric space

A base flow ({7t}ier, (Q,d)) is defined by a continuous mapping
T:RxQ — Q,(tq) — 7'(q) satisfying

1) 7°(-) = idg,
2) Ttts() = 7t(-) o 75(-) foreach t,s € R;
A cocycle over the base flow  ({7t}icr, (Q, d)) is defined by the

pair ({¢'(q, ) }ier, (M, p)), where (M, p) is a metric space and
qeq

1) o'(q,): M - M, VteR, VqgeQ
2) SOO(CL ) — IdM: v q c Q7
3) 't (q,") = ¢'(75(q), ¥%(q,")), Vi, seER, VqgeQ.

Shortly we denote the cocycle over the base flow by (7, ¢). If
g€ Qw— Z(q) C Misamap, we call Z = {Z(q) }4co a nonau-

tonomous set. The nonautonomous set Z = {Z(q) }4eq is said
to be invariant for the cocycle (7, @) if

0'(q,Z(q)) = Z(7'(q)) forallt e Rand q € Q.
Rokhlin (1964); Kloeden, Schmalfuss (1997)

2. Hausdorff dimension estimates for invariant sets of
cocycles

Suppose H is a separable Hilbert space, K C H is a compact set,
Le L(H)

ap(L) = sup inf || Lul, k=1,2,..
McH ueM
dim M=k |[[u||=1
) aa (L) ... ap(L), for k>0
wk(L)_{ 1, for k=0.



Suppose d > 0 is an arbitrary number. It can be represented as
d = do+ s,wheredy € {0,1,--- ,n—1}and s € [0, 1]. Now we
put

] wa (L)Y Swe (L), for d >0,
wa(L) 1= { 1 for d=0

and we call wy(L) the singular value function of L of order d.

Y

Boichenko, Leonov and Reitmann (2005)

Suppose (7, ) is a cocycle:
Q= Q,
Sot('a'):QXH_)H7
H is a Hilbert space.

Assumptions:

(A1) The nonautonomous set Z = {Z(q) }4eq is invariant for the
cocycle (p, 7).

(A2) Foreachqg e Qandt > 0let 9>¢'(q,-) : H — H be the
Fréchet differential of ©(q, -) w.r.t. the second argument u, which
has the following properties:

a) For each e > 0 and ¢ > 0 the function

g:(t,q) ;= sup l¢* (g, v) — ¢'(g,u) — o' (g, u) (v — )|

u,v€Z(q) v —ull
O<||v—ul|<e

is bounded on @ and converges to zero as ¢ — O.

b)

sup sup |02 ¢"(q, u)llop < o0
7€Q ueZ(q)



Theorem 1 (Reitmann, Slepukhin; 2011) Suppose that the as-
sumptions (Al) and (A2) are satisfied and the following conditions
hold:

1) There exists a compact set K C H such that

U Z(q) C K.
qeQ

2) There exists a continuous function < : Q x H — R4, a time
s > 0 and a number d > O such that

Z(q) C Z(m°(q))
and

Sup k(7°(q), ¥°(q,u)) wg(92 % (g, 1)) < 1 (1)

(qu)EQX K r(gq,u)
Thendimyg Z(q) <d, VqeQ.

Stochastic version: Crauel, Flandoli (1998)
3. Invariant measures for cocycles

Let (Q, %2, 1) be a probability space. A metric dynamical system
(MDS) is given by amap 7()(-) : Z x Q — Q. For fixed time this
is a family of measurable maps which satisfies the group property

1) % =idg; 2)rits=rtor®Vt,seZ.

{7t} is assumed to be measure preserving, i.e., 7!(u) = p. Sup-
pose that (M,B) is a measurable space. A cocycle over the
MDS is givenby amap ¢ : Z4+ x Q x M — M which is for fixed
time a (A ® B, B)-measurable mapping and satisfies for s,t € Z
and almost all ¢ € @ and v € M the relations

e (q,u) =u; ¢ (g,u) = @' (7°(q), ¢’ (g,u)).



It is possible to write the cocycle as a skew product flow (g, u) —
(7(q), ¥"(q,w)) =: ¢'(q,u).

An invariant measure [ for the cocycle (7, ¢) is a probability
measure on Q x M which is invariant w.r.t. the skew product,
i.e. Vt € Z4 ¢'(p) = p and has the marginal mou = © where
T - Q@ X M — @ is the projection. We can characterize invariant
measures by their disintegration ii(d(q,uv)) = pe(du)u(dg) =
i(q, du)du(q). The Perron-Frobenius operator P is defined by

Piq, Z(q)) := ii(q,¢ (g, Z2(v(q)))), q€Q,
where ©~1(q, Z(7(q))) is the preimage under o = ' of the set
Z(r(q)).

Arnold (1998); Imkeller, Kloeden (2003)

Example 1 (Baladi, Viana; 1996) 3 : I — 1,1 = U ({k} x Byg)
k>0

with Bo = I the unit interval, { By} subsets of I, ¢(k,u) = (k +

1, o(u)) atower construction, where ¢ : I — I admits an invariant

measure 1 absolutely continuous w.r.t. m.

Introduce a cocycle « I — [0, ) and the Perron-Frobenius
operator

A k(l,z) g(, x)
P@)(ky) = > , (2)
=iy BE ) [@'(2)]

acting at the Banach space BV (1) of functions § : I — R s. th.

ldllsy = var § -+ sup || + / Glrda < oo,

If o is an eigenfunction of P associated to the eigenvalue 1 then
[ = okrdz IS an invariant measure for ¢. Suppose ¢ is invertible.
Then (2) reduces with g = k,u = x to

k(q,u) g(q,u)
k(@(g,u)) o' (w)|

P(g)(¢(q,u)) =



For the existence of an invariant measure we need

k(q,u) I
/-ﬁ:(iﬁ(q, w) |o'(w)| ©
o K(fiizq,qu))|90’(U)l =1, VY(g,u)e@QxI. (4)

Ford = nand s = 1 we have w, (92 ¢ (q,u)) = |det > o' (q, u)|.
Thus if we consider (1) as equality this condition coincides with (4).

4. The Perron-Frobenius operator on rigged Hilbert spaces

Given a Hilbert space H. A subspace ‘H C H is chosen such that
the following holds:

1) H has a topology 7 with respect to which it is a locally convex
vector space;

2) (H,7T) is continuously and densely embedded into H ;
3) (H,7T) is complete and barrelled.

The triplet H € H C H' where H' denotes the topological dual
of H is called rigged Hilbert space or Gelfand triplet . Suppose
A€ L(H,H). Then the adjoint w.r.t. H is the operator

AT € £(H,H') which is given by

(An,9) = (AT9,m) Vn,9eH

where (-,-) is the pairing w.r.t. H.The operator A is selfadjoint
wrt Hif AT = A;

Aisnormal if ATA= AAT
Berezansky (1968); Gelfand, Vilenkin (1964)



Example 2 Consider the microwave heating problem

Wit — Waz + 0(9)1015 =0,
0 — 0y = c(w?, 0<x<1,t>0,
w(0,t) = f1(t), w(1,t) = f2(1), > (5)
0(0,t) =0(1,t) =0, t>0,
w(xa O) — wo(ac) ) wt(wa O) — wl(w) )
0(x,0) =6p(z), O<z< 1.
Assumptions:
(A3) o is locally Lipschitz on (0,4+o00). There exist constants

0 < 09 < o1 suchthat og < 0(2) < gy forany z > 0. ois
monotonically decreasing on (0, +o00).

/

(A4) wo € H'(0,1), w1 € L?(0,1), 6o € W2(0,1),
6o > 0a.e.on (0,1).

(A5) f1, f» € C2(R) and there exists a constant ¢ such that the
functions |f1], |f5],|f7],|f5| are bounded on R by the constant c.

Manoranjan, Yin (2006): For any T' > O there exists a global weak
solution (w(x,t), 6(x,t)) of the problem (5) such that

w € L®(0,T; HY(0,1)), 6 € W5*((0,1) x (0,T))
Introduce for ¢ > 0 and z € (0, 1) the new functions

flz,t) = 1)1 —2) + oDz, Y(z,t) = w(z,t) — f(z,1).
We get )
Vit — Yax + 0(0)r = fu(z,t) — fi(x,t)0(0),
O — 0 =0 (D)W + f)?, 0<z <1, t>0,
(0,t) = (1,t) =0, 0(0,t) =60(1,t) =0,¢t>0,
Y(z,0) = Yo(r) = wo(z) — f(z,0),
Yi(z,0) = wi(x) — fi(z,0),
0(x,0) =6p(x), O< < 1.

N~

(6)




Define M = H}(0,1) x L?(0,1) x (W2(0,1)n{6|6 >0, a.e.})
1,0, 0113 = [l 2201y + 1011201y F 10113201y -

Introduce Q = R, 7i(s) = t+ s, ¢'(s,ug) = u(t + s,s,u0)
where u(t,s,ug) = (¥(-,t),v:(-,t),0(-,t)) is a solution of (6)
with u(s, s, ug) = wuo.

Theorem 2 (Kalinin, Reitmann, Yumaguzin, 2011)

System (6) generates a cocycle (7, ¢) which admits a global pull-
back - B attractor.

Y1 wi(z, 1)
Definey=| yo | = w(x,t) and consider the evolution
Y3 9(%, t)
system
dy
- = Ay + B¢, y(0) = yo (7)
on rigged Hilbert spaces Y1 C Yo C Y_1 with = a Hilbert space,
A:Yrs —-Y 1, B:= — Y_; linear operators and £ a nonlinear
function.

Let ¢ be an endomorphism of a measure space (M, 8). The evo-
lution operator U is given by the Koopman operator

(Ug)(z) = g(e(x)),

where g is a square-integrable function.

The adjoint is the Perron-Frobenius operator P.
(Lasota, Mackey; 1985)

5. Parameter-dependent cocycles and bifurcations

Let (Qa, Ao, o) be a family of probability spaces depending on a
parameter o € A, where (A, p4) IS a metric space. A parametric

metric dynamical system (PMDS) is given by a family of maps
7L (-) : Qo — Qo which are measurable and satisfy the properties



)0 =idg,; 2)rits=71lors t,seZ.

{7t} ez is assumed to be measure preserving, i.e. 7i(ua) =

aceA
e, t € Z, a € A. Suppose that (M, *B) is an other measurable

space. A parametric cocycle over the PMDS is given by a fam-
ily of parameter dependent maps ¢! (-) : Qo X M — M which
are (2, ® B,B) measurable maps and satisfy the cocycle prop-
erty. We write the parametric cocycle as a parametric skew product
system

(g,u) € QaxM — (15(q), ¢alq,w)) =t Go(q,u), t EZ, a € A.

A family of invariant measures  {/i, }ac4 for the parametric co-
cycle is a family of probability measures on Q x M which is in-
variant w.r.t the parametric skew product, i.e., ¢\ (fio) = jio and
TQ.fla = Ha , o € A.

A parameter value aq is called a bifurcation point of the family of
invariant measures { /i }ac4 if this family is not structurally stable
at ap, i.e., if in any neighborhood of g there are parameter values
a € As. th. {g}, } and {&},} are not topologically equivalent.

Arnold (1998)
Example 3 The Rényimap ¢, : [0,1] — [0, 1]isgivenby ¢, (x) =
ax modl with a > 1. This map generates a metric dynamical sys-

tem ({¢L}, m), where m denotes the Lebesgue measure on the
unit interval.

The Koopman operator U, for a € N is given by

a—1
(Uag)(@) =™ g(pai(x)),
1=0

where ¢, ; is the inverse of the Renyi map on its ¢-th interval of
monotonicity.

(Bandtlow, Antoniou and Suchanecki, 1997)



The associated Perron-Frobenius operator P, of this map

P, : L?(m) — L?(m)

d
Pn=— / ndm,

IS given by

dm

0t (+)

where d— is the Radon-Nikodym derivative w.r.t. m. As positive
function spaces H we can use spaces which are densely and con-
tinuously embedded in L2(m) :

- Banach spaces £.(c > 0) of entire functions of exponential
type c;

- Fréchet spaces H(D,) (r > 1) of functions analytic in the
open disk with radius r ;

- Fréchet space C* of infinitely differentiable functions on the
closed unit interval.

For ¢ < ¢ and » < ' we have
Ee = Ev = H(Dy) — H(D,) — C® — L?(m).

The map under perturbations: ¢, (g, u) = pq(u)-+q. Consider the
skew product system @, : Q x I — Q x I =: I with $*(q,u) =
(7%(q), ©*(q,w)) and the associated function spaces L"(I).
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