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1. Basic tools for cocycle theory

Let (Q, d) be a complete metric space

A base flow ({τ t}t∈R, (Q, d)) is defined by a continuous mapping
τ : R×Q→ Q, (t, q) 7→ τ t(q) satisfying

1) τ ◦(·) = idQ,

2) τ t+s(·) = τ t(·) ◦ τ s(·) for each t, s ∈ R ;

A cocycle over the base flow ({τ t}t∈R, (Q, d)) is defined by the
pair ({ϕt(q, ·)} t∈R

q∈Q

, (M,ρ)), where (M,ρ) is a metric space and

1) ϕt(q, ·) : M →M, ∀ t ∈ R, ∀ q ∈ Q

2) ϕo(q, ·) = idM , ∀ q ∈ Q,

3) ϕt+s(q, ·) = ϕt(τ s(q), ϕs(q, ·)), ∀ t, s ∈ R, ∀ q ∈ Q .

Shortly we denote the cocycle over the base flow by (τ, ϕ). If
q ∈ Q 7→ Z(q) ⊂ M is a map, we call Ẑ = {Z(q)}q∈Q a nonau-
tonomous set. The nonautonomous set Ẑ = {Z(q)}q∈Q is said
to be invariant for the cocycle (τ, ϕ) if

ϕt(q, Z(q)) = Z(τ t(q)) for all t ∈ R and q ∈ Q.

Rokhlin (1964); Kloeden, Schmalfuss (1997)

2. Hausdorff dimension estimates for invariant sets of
cocycles

SupposeH is a separable Hilbert space,K ⊂ H is a compact set,
L ∈ L(H)

αk(L) = sup
M⊂H

dimM=k

inf
u∈M
‖u‖=1

‖Lu‖ , k = 1,2, ...

ωk(L) =

{
α1(L) · . . . · αk(L) , for k > 0

1 , for k = 0 .



Suppose d ≥ 0 is an arbitrary number. It can be represented as
d = d0 + s, where d0 ∈ {0,1, · · · , n−1} and s ∈ [0,1]. Now we
put

ωd(L) :=

{
ωd0

(L)1−sωd0
(L)1+s , for d > 0 ,

1 , for d = 0

and we call ωd(L) the singular value function of L of order d.

Boichenko, Leonov and Reitmann (2005)

Suppose (τ, ϕ) is a cocycle:

τ t : Q→ Q ,

ϕt(·, ·) : Q×H → H ,

H is a Hilbert space .

Assumptions:

(A1) The nonautonomous set Ẑ = {Z(q)}q∈Q is invariant for the
cocycle (ϕ, τ).

(A2) For each q ∈ Q and t > 0 let ∂2 ϕt(q, ·) : H → H be the
Fréchet differential of ϕt(q, ·) w.r.t. the second argument u, which
has the following properties:

a) For each ε > 0 and t > 0 the function

gε(t, q) := sup
u,v∈Z(q)

0<‖v−u‖≤ε

‖ϕt(q, v)− ϕt(q, u)− ∂2 ϕ
t(q, u)(v − u)‖

‖v − u‖

is bounded on Q and converges to zero as ε→ 0.

b)

sup
q∈Q

sup
u∈Z(q)

‖∂2 ϕ
t(q, u)‖op <∞



Theorem 1 (Reitmann, Slepukhin; 2011) Suppose that the as-
sumptions (A1) and (A2) are satisfied and the following conditions
hold:

1) There exists a compact set K̃ ⊂ H such that
⋃

q∈Q

Z(q) ⊂ K̃ .

2) There exists a continuous function κ : Q × H → R+, a time
s > 0 and a number d > 0 such that

Z(q) ⊂ Z(τ s(q))

and

sup
(q,u)∈Q×K̃

κ(τ s(q), ϕs(q, u))

κ(q, u)
ωd(∂2 ϕ

s(q, u)) < 1 (1)

Then dimH Z(q) ≤ d , ∀q ∈ Q .

Stochastic version: Crauel, Flandoli (1998)

3. Invariant measures for cocycles

Let (Q,A, µ) be a probability space. A metric dynamical system
(MDS) is given by a map τ (·)(·) : Z × Q → Q. For fixed time this
is a family of measurable maps which satisfies the group property

1) τ0 = idQ ; 2) τ t+s = τ t ◦ τ s,∀ t, s ∈ Z.

{τ t} is assumed to be measure preserving, i.e., τ t(µ) = µ. Sup-
pose that (M,B) is a measurable space. A cocycle over the
MDS is given by a map ϕ : Z+ × Q ×M → M which is for fixed
time a (A⊗B,B)-measurable mapping and satisfies for s, t ∈ Z+

and almost all q ∈ Q and u ∈M the relations

ϕ◦(q, u) = u ; ϕt+s(q, u) = ϕt(τ s(q), ϕs(q, u)).



It is possible to write the cocycle as a skew product flow (q, u) 7→
(τ t(q), ϕt(q, u)) =: ϕ̂t(q, u).

An invariant measure µ̂ for the cocycle (τ, ϕ) is a probability
measure on Q × M which is invariant w.r.t. the skew product,
i.e. ∀t ∈ Z+ ϕ̂t(µ̂) = µ̂ and has the marginal πQµ̂ = µ where
πQ : Q×M → Q is the projection. We can characterize invariant
measures by their disintegration µ̂(d(q, u)) = µ̂q(du)µ(dq) =
µ̂(q, du)dµ(q). The Perron-Frobenius operator P is defined by

Pµ̂(q, Z(q)) := µ̂(q, ϕ−1(q, Z(τ(q)))) , q ∈ Q,

where ϕ−1(q, Z(τ(q))) is the preimage under ϕ = ϕ1 of the set
Z(τ(q)).

Arnold (1998); Imkeller, Kloeden (2003)

Example 1 (Baladi, Viana; 1996) ϕ̂ : Î → Î, Î =
⋃
k≥0

({k} × Bk)

with B0 = I the unit interval, {Bk} subsets of I, ϕ̂(k, u) = (k+
1, ϕ(u)) a tower construction, where ϕ : I → I admits an invariant
measure µ absolutely continuous w.r.t. m.

Introduce a cocycle κ : Î → [0,∞) and the Perron-Frobenius
operator

P (ĝ)(k, y) =
∑

ϕ̂(l,x)=(k,y)

κ(l, x)

κ(k, y)

ĝ(l, x)

|ϕ′(x)|
(2)

acting at the Banach space BV (Î) of functions ĝ : Î → R s. th.

‖ĝ‖BV = var ĝ+ sup |ĝ|+

∫
|ĝ|κdx <∞.

If ̺ is an eigenfunction of P associated to the eigenvalue 1 then
µ̂ = ̺κdx is an invariant measure for ϕ̂. Suppose ϕ̂ is invertible.
Then (2) reduces with q = k, u = x to

P (ĝ)(ϕ̂(q, u)) =
κ(q, u)

κ(ϕ̂(q, u))

ĝ(q, u)

|ϕ′(u)|
.



For the existence of an invariant measure we need

κ(q, u)

κ(ϕ̂(q, u))

1

|ϕ′(u)|
= 1 (3)

or
κ(ϕ̂(q, u))

κ(q, u)
|ϕ′(u)| = 1 , ∀(q, u) ∈ Q× I . (4)

For d = n and s = 1 we have ωn(∂2 ϕ1(q, u)) = |det ∂2 ϕ1(q, u)|.
Thus if we consider (1) as equality this condition coincides with (4).

4. The Perron-Frobenius operator on rigged Hilbert spaces

Given a Hilbert space H. A subspace H ⊂ H is chosen such that
the following holds:

1) H has a topology T with respect to which it is a locally convex
vector space;

2) (H, T ) is continuously and densely embedded into H ;

3) (H, T ) is complete and barrelled.

The triplet H ⊂ H ⊂ H′ where H′ denotes the topological dual
of H is called rigged Hilbert space or Gelfand triplet . Suppose
A ∈ L(H,H′). Then the adjoint w.r.t. H is the operator
A+ ∈ L(H,H′) which is given by

(Aη, ϑ) = (A+ϑ, η) ∀ η, ϑ ∈ H

where (·, ·) is the pairing w.r.t.H.The operator A is selfadjoint
w.r.t. H if A+ = A ;

A is normal if A+A = AA+

Berezansky (1968); Gelfand, Vilenkin (1964)



Example 2 Consider the microwave heating problem

wtt − wxx + σ(θ)wt = 0 ,

θt − θxx = σ(θ)w2
t , 0 < x < 1 , t > 0 ,

w(0, t) = f1(t), w(1, t) = f2(t) ,

θ(0, t) = θ(1, t) = 0 , t > 0 ,

w(x,0) = w0(x) , wt(x,0) = w1(x) ,

θ(x,0) = θ0(x) , 0 < x < 1 .





(5)

Assumptions:
(A3) σ is locally Lipschitz on (0,+∞). There exist constants
0 < σ0 ≤ σ1 such that σ0 < σ(z) ≤ σ1 for any z > 0. σ is
monotonically decreasing on (0,+∞).

(A4) w0 ∈ H1(0,1) , w1 ∈ L2(0,1) , θ0 ∈W 2
3 (0,1) ,

θ0 ≥ 0 a.e. on (0,1).

(A5) f1, f2 ∈ C2(R) and there exists a constant c such that the
functions |f ′1| , |f

′
2| , |f

′′
1 | , |f

′′
2 | are bounded on R by the constant c.

Manoranjan, Yin (2006): For any T > 0 there exists a global weak
solution (w(x, t) , θ(x, t)) of the problem (5) such that
w ∈ L∞(0, T ;H1(0,1)) , θ ∈ W

2,1
3 ((0,1)× (0, T))

Introduce for t ≥ 0 and x ∈ (0,1) the new functions

f(x, t) = f1(t)(1− x) + f2(t)x , ψ(x, t) = w(x, t)− f(x, t).

We get
ψtt − ψxx + σ(θ)ψt = ftt(x, t)− ft(x, t)σ(θ) ,

θt − θxx = σ(θ)(ψt + ft)2 , 0 < x < 1 , t > 0 ,

ψ(0, t) = ψ(1, t) = 0 , θ(0, t) = θ(1, t) = 0 , t > 0 ,

ψ(x,0) = ψ0(x) = w0(x)− f(x,0) ,

ψt(x,0) = w1(x)− ft(x,0) ,

θ(x,0) = θ0(x) , 0 < x < 1 .





(6)



DefineM = H1
0(0,1)×L

2(0,1)×(W 2
3 (0,1)∩{θ|θ ≥ 0 , a.e.})

‖(ψ, v, θ)‖2M = ‖ψx‖2L2(0,1)
+ ‖v‖2

L2(0,1)
+ ‖θ‖2

L2(0,1)
.

Introduce Q = R , τ t(s) = t + s , ϕt(s, u0) = u(t + s, s, u0)
where u(t, s, u0) = (ψ(·, t), ψt(·, t) , θ(·, t)) is a solution of (6)
with u(s, s, u0) = u0.

Theorem 2 (Kalinin, Reitmann, Yumaguzin, 2011)

System (6) generates a cocycle (τ, ϕ) which admits a global pull-
back -B attractor.

Define y =




y1
y2
y3


 =




wt(x, t)
w(x, t)
θ(x, t)


 and consider the evolution

system
dy

dt
= Ay+ Bξ , y(0) = y0 (7)

on rigged Hilbert spaces Y1 ⊂ Y0 ⊂ Y−1 with Ξ a Hilbert space,
A : Y1 → Y−1 , B : Ξ → Y−1 linear operators and ξ a nonlinear
function.

Let ϕ be an endomorphism of a measure space (M,B). The evo-
lution operator U is given by the Koopman operator

(Ug)(x) = g(ϕ(x)) ,

where g is a square-integrable function.

The adjoint is the Perron-Frobenius operator P .
(Lasota, Mackey; 1985)

5. Parameter-dependent cocycles and bifurcations

Let (Qα,Aα, µα) be a family of probability spaces depending on a
parameter α ∈ A, where (A, ρA) is a metric space. A parametric
metric dynamical system (PMDS) is given by a family of maps
τ tα(·) : Qα → Qα which are measurable and satisfy the properties



1) τ0α = idQα
; 2) τ t+sα = τ tα ◦ τ sα , t, s ∈ Z .

{τ tα} t∈Z
α∈A

is assumed to be measure preserving, i.e. τ tα(µα) =

µα , t ∈ Z , α ∈ A. Suppose that (M,B) is an other measurable
space. A parametric cocycle over the PMDS is given by a fam-
ily of parameter dependent maps ϕtα(·) : Qα × M → M which
are (Aα ⊗ B,B) measurable maps and satisfy the cocycle prop-
erty. We write the parametric cocycle as a parametric skew product
system

(q, u) ∈ Qα×M 7→ (τ tα(q), ϕ
t
α(q, u)) =: ϕ̂tα(q, u) , t ∈ Z, α ∈ A.

A family of invariant measures {µ̂α}α∈A for the parametric co-
cycle is a family of probability measures on Q × M which is in-
variant w.r.t the parametric skew product, i.e., ϕ̂tα(µ̂α) = µ̂α and
πQα

µ̂α = µα , α ∈ A.

A parameter value α0 is called a bifurcation point of the family of
invariant measures {µ̂α}α∈A if this family is not structurally stable
at α0, i.e., if in any neighborhood of α0 there are parameter values
α ∈ A s. th. {ϕ̂tα0

} and {ϕ̂tα} are not topologically equivalent.

Arnold (1998)

Example 3 The Rényi mapϕα : [0,1] → [0,1] is given by ϕα(x) =
αxmod1 with α > 1. This map generates a metric dynamical sys-
tem ({ϕtα},m), where m denotes the Lebesgue measure on the
unit interval.

The Koopman operator Uα for α ∈ N is given by

(Uαg)(x) = α−1
α−1∑

i=0

g(ϕα,i(x)) ,

where ϕα,i is the inverse of the Rényi map on its i-th interval of
monotonicity.

(Bandtlow, Antoniou and Suchanecki, 1997)



The associated Perron-Frobenius operator Pα of this map

Pα : L2(m) → L2(m)

is given by

Pαη =
d

dm

∫

ϕ−1
α (·)

η dm ,

where d
dm

is the Radon-Nikodym derivative w.r.t. m. As positive
function spaces H we can use spaces which are densely and con-
tinuously embedded in L2(m) :

- Banach spaces Ec(c > 0) of entire functions of exponential
type c ;

- Fréchet spaces H(Dr) (r > 1) of functions analytic in the
open disk with radius r ;

- Fréchet space C∞ of infinitely differentiable functions on the
closed unit interval.

For c < c′ and r < r′ we have

Ec →֒ Ec′ →֒ H(Dr′) →֒ H(Dr) →֒ C∞ →֒ L2(m) .

The map under perturbations: ϕα(q, u) = ϕα(u)+q. Consider the
skew product system ϕ̂α : Q × I → Q × I =: Î with ϕ̂k(q, u) =

(τk(q), ϕk(q, u)) and the associated function spaces Lr(Î).
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