Bifurcations of invariant measures in discrete-time parameter dependent cocycles

Anastasia Maltseva* and Volker Reitmann
St. Petersburg State University, Russia
Department of Mathematics and Mechanics

Equadiff 13,
August 26-30, 2013, Prague, Czech Republic
*Supported by DAAD and the German-Russian Interdisciplinary Science Center (G-RISC)

1. Basic tools for cocycle theory

Let (Q, d) be a complete metric space
A base flow $\left(\left\{\tau^{t}\right\}_{t \in \mathbb{R}},(Q, d)\right.$) is defined by a continuous mapping $\tau: \mathbb{R} \times Q \rightarrow Q,(t, q) \mapsto \tau^{t}(q)$ satisfying

1) $\tau^{\circ}(\cdot)=\operatorname{id}_{Q}$,
2) $\tau^{t+s}(\cdot)=\tau^{t}(\cdot) \circ \tau^{s}(\cdot)$ for each $t, s \in \mathbb{R}$;

A cocycle over the base flow $\left(\left\{\tau^{t}\right\}_{t \in \mathbb{R}},(Q, d)\right.$) is defined by the $\operatorname{pair}\left(\left\{\varphi^{t}(q, \cdot)\right\}_{\substack{t \in \mathbb{R} \\ q \in Q}},(M, \rho)\right)$, where (M, ρ) is a metric space and

1) $\varphi^{t}(q, \cdot): M \rightarrow M, \quad \forall t \in \mathbb{R}, \quad \forall q \in Q$
2) $\varphi^{o}(q, \cdot)=\operatorname{id}_{M}, \quad \forall q \in Q$,
3) $\varphi^{t+s}(q, \cdot)=\varphi^{t}\left(\tau^{s}(q), \varphi^{s}(q, \cdot)\right), \quad \forall t, s \in \mathbb{R}, \quad \forall q \in Q$.

Shortly we denote the cocycle over the base flow by (τ, φ). If $q \in Q \mapsto Z(q) \subset M$ is a map, we call $\widehat{Z}=\{Z(q)\}_{q \in Q}$ a nonautonomous set. The nonautonomous set $\widehat{Z}=\{Z(q)\}_{q \in Q}$ is said to be invariant for the cocycle (τ, φ) if

$$
\varphi^{t}(q, Z(q))=Z\left(\tau^{t}(q)\right) \text { for all } t \in \mathbb{R} \text { and } q \in Q .
$$

Rokhlin (1964); Kloeden, Schmalfuss (1997)

2. Hausdorff dimension estimates for invariant sets of cocycles

Suppose H is a separable Hilbert space, $K \subset H$ is a compact set, $L \in \mathcal{L}(H)$

$$
\begin{array}{ll}
\alpha_{k}(L) & =\sup _{\substack{M \subset H \\
\operatorname{dim} M=k\|u\|=1}} \inf _{u \in M}\|L u\|,
\end{array} \quad k=1,2, \ldots .
$$

Suppose $d \geq 0$ is an arbitrary number. It can be represented as $d=d_{0}+s$, where $d_{0} \in\{0,1, \cdots, n-1\}$ and $s \in[0,1]$. Now we put

$$
\omega_{d}(L):=\left\{\begin{array}{cl}
\omega_{d_{0}}(L)^{1-s} \omega_{d_{0}}(L)^{1+s}, & \text { for } d>0, \\
1, & \text { for } d=0
\end{array}\right.
$$

and we call $\omega_{d}(L)$ the singular value function of L of order d.
Boichenko, Leonov and Reitmann (2005)
Suppose (τ, φ) is a cocycle:

$$
\begin{array}{r}
\tau^{t}: Q \rightarrow Q, \\
\varphi^{t}(\cdot, \cdot): Q \times H \rightarrow H, \\
H \text { is a Hilbert space } .
\end{array}
$$

Assumptions:

(A1) The nonautonomous set $\widehat{Z}=\{Z(q)\}_{q \in Q}$ is invariant for the cocycle (φ, τ).
(A2) For each $q \in Q$ and $t>0$ let $\partial_{2} \varphi^{t}(q, \cdot): H \rightarrow H$ be the Fréchet differential of $\varphi^{t}(q, \cdot)$ w.r.t. the second argument u, which has the following properties:
a) For each $\varepsilon>0$ and $t>0$ the function

$$
g_{\varepsilon}(t, q):=\sup _{\substack{u, v \in Z(q) \\ 0<\|v-u\| \leq \varepsilon}} \frac{\left\|\varphi^{t}(q, v)-\varphi^{t}(q, u)-\partial_{2} \varphi^{t}(q, u)(v-u)\right\|}{\|v-u\|}
$$

is bounded on Q and converges to zero as $\varepsilon \rightarrow 0$.
b)

$$
\sup _{q \in Q} \sup _{u \in Z(q)}\left\|\partial_{2} \varphi^{t}(q, u)\right\|_{o p}<\infty
$$

Theorem 1 (Reitmann, Slepukhin; 2011) Suppose that the assumptions (A1) and (A2) are satisfied and the following conditions hold:

1) There exists a compact set $\widetilde{K} \subset H$ such that

$$
\overline{\bigcup_{q \in Q} Z(q)} \subset \widetilde{K} .
$$

2) There exists a continuous function $\kappa: Q \times H \rightarrow \mathbb{R}_{+}$, a time $s>0$ and a number $d>0$ such that

$$
Z(q) \subset Z\left(\tau^{s}(q)\right)
$$

and

$$
\begin{equation*}
\sup _{(q, u) \in Q \times \widetilde{K}} \frac{\kappa\left(\tau^{s}(q), \varphi^{s}(q, u)\right)}{\kappa(q, u)} \omega_{d}\left(\partial_{2} \varphi^{s}(q, u)\right)<1 \tag{1}
\end{equation*}
$$

Then $\operatorname{dim}_{H} Z(q) \leq d, \quad \forall q \in Q$.
Stochastic version: Crauel, Flandoli (1998)

3. Invariant measures for cocycles

Let (Q, \mathfrak{A}, μ) be a probability space. A metric dynamical system (MDS) is given by a map $\tau^{(\cdot)}(\cdot): \mathbb{Z} \times Q \rightarrow Q$. For fixed time this is a family of measurable maps which satisfies the group property

1) $\tau^{0}=\operatorname{id}_{Q}$; 2) $\tau^{t+s}=\tau^{t} \circ \tau^{s}, \forall t, s \in \mathbb{Z}$.
$\left\{\tau^{t}\right\}$ is assumed to be measure preserving, i.e., $\tau^{t}(\mu)=\mu$. Suppose that (M, \mathfrak{B}) is a measurable space. A cocycle over the MDS is given by a map $\varphi: \mathbb{Z}_{+} \times Q \times M \rightarrow M$ which is for fixed time a $(\mathfrak{A} \otimes \mathfrak{B}, \mathfrak{B})$-measurable mapping and satisfies for $s, t \in \mathbb{Z}_{+}$ and almost all $q \in Q$ and $u \in M$ the relations

$$
\varphi^{\circ}(q, u)=u ; \quad \varphi^{t+s}(q, u)=\varphi^{t}\left(\tau^{s}(q), \varphi^{s}(q, u)\right)
$$

It is possible to write the cocycle as a skew product flow $(q, u) \mapsto$ ($\left.\tau^{t}(q), \varphi^{t}(q, u)\right)=: \hat{\varphi}^{t}(q, u)$.

An invariant measure $\hat{\mu}$ for the cocycle (τ, φ) is a probability measure on $Q \times M$ which is invariant w.r.t. the skew product, i.e. $\forall t \in \mathbb{Z}_{+} \widehat{\varphi}^{t}(\widehat{\mu})=\widehat{\mu}$ and has the marginal $\pi_{Q} \widehat{\mu}=\mu$ where $\pi_{Q}: Q \times M \rightarrow Q$ is the projection. We can characterize invariant measures by their disintegration $\widehat{\mu}(d(q, u))=\widehat{\mu}_{q}(d u) \mu(d q)=$ $\widehat{\mu}(q, d u) d \mu(q)$. The Perron-Frobenius operator P is defined by

$$
P \widehat{\mu}(q, Z(q)):=\widehat{\mu}\left(q, \varphi^{-1}(q, Z(\tau(q)))\right), \quad q \in Q,
$$

where $\varphi^{-1}(q, Z(\tau(q)))$ is the preimage under $\varphi=\varphi^{1}$ of the set $Z(\tau(q))$.

Arnold (1998); Imkeller, Kloeden (2003)
Example 1 (Baladi, Viana; 1996) $\hat{\varphi}: \widehat{I} \rightarrow \widehat{I}, \widehat{I}=\bigcup_{k \geq 0}\left(\{k\} \times B_{k}\right)$ with $B_{0}=I$ the unit interval, $\left\{B_{k}\right\}$ subsets of $I, \hat{\varphi}(k, u)=(k+$ $1, \varphi(u))$ a tower construction, where $\varphi: I \rightarrow I$ admits an invariant measure μ absolutely continuous w.r.t. m.

Introduce a cocycle $\kappa: \widehat{I} \rightarrow[0, \infty)$ and the Perron-Frobenius operator

$$
\begin{equation*}
P(\widehat{g})(k, y)=\sum_{\hat{\varphi}(l, x)=(k, y)} \frac{\kappa(l, x)}{\kappa(k, y)} \frac{\widehat{g}(l, x)}{\left|\varphi^{\prime}(x)\right|} \tag{2}
\end{equation*}
$$

acting at the Banach space $B V(\widehat{I})$ of functions $\widehat{g}: \widehat{I} \rightarrow \mathbb{R}$ s. th.

$$
\|\hat{g}\|_{B V}=\operatorname{var} \widehat{g}+\sup |\hat{g}|+\int|\hat{g}| \kappa d x<\infty .
$$

If ϱ is an eigenfunction of P associated to the eigenvalue 1 then $\hat{\mu}=\varrho \kappa d x$ is an invariant measure for $\hat{\varphi}$. Suppose $\hat{\varphi}$ is invertible. Then (2) reduces with $q=k, u=x$ to

$$
P(\hat{g})(\hat{\varphi}(q, u))=\frac{\kappa(q, u)}{\kappa(\widehat{\varphi}(q, u))} \frac{\widehat{g}(q, u)}{\left|\varphi^{\prime}(u)\right|} .
$$

For the existence of an invariant measure we need

$$
\begin{align*}
& \frac{\kappa(q, u)}{\kappa(\hat{\varphi}(q, u))} \frac{1}{\left|\varphi^{\prime}(u)\right|}=1 \tag{3}\\
\text { or } & \frac{\kappa(\hat{\varphi}(q, u))}{\kappa(q, u)}\left|\varphi^{\prime}(u)\right|=1, \quad \forall(q, u) \in Q \times I . \tag{4}
\end{align*}
$$

For $d=n$ and $s=1$ we have $\omega_{n}\left(\partial_{2} \varphi^{1}(q, u)\right)=\left|\operatorname{det} \partial_{2} \varphi^{1}(q, u)\right|$.
Thus if we consider (1) as equality this condition coincides with (4).

4. The Perron-Frobenius operator on rigged Hilbert spaces

Given a Hilbert space H. A subspace $\mathcal{H} \subset H$ is chosen such that the following holds:

1) \mathcal{H} has a topology \mathcal{T} with respect to which it is a locally convex vector space;
2) $(\mathcal{H}, \mathcal{T})$ is continuously and densely embedded into H;
3) $(\mathcal{H}, \mathcal{T})$ is complete and barrelled.

The triplet $\mathcal{H} \subset H \subset \mathcal{H}^{\prime}$ where \mathcal{H}^{\prime} denotes the topological dual of \mathcal{H} is called rigged Hilbert space or Gelfand triplet. Suppose $A \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$. Then the adjoint w.r.t. H is the operator $A^{+} \in \mathcal{L}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$ which is given by

$$
(A \eta, \vartheta)=\left(A^{+} \vartheta, \eta\right) \quad \forall \eta, \vartheta \in \mathcal{H}
$$

where (\cdot, \cdot) is the pairing w.r.t. H.The operator A is selfadjoint w.r.t. H if $A^{+}=A$;
A is normal if $A^{+} A=A A^{+}$
Berezansky (1968); Gelfand, Vilenkin (1964)

Example 2 Consider the microwave heating problem

$$
\begin{align*}
& w_{t t}-w_{x x}+\sigma(\theta) w_{t}=0, \\
& \theta_{t}-\theta_{x x}=\sigma(\theta) w_{t}^{2}, 0<x<1, t>0, \\
& w(0, t)=f_{1}(t), w(1, t)=f_{2}(t), \tag{5}\\
& \theta(0, t)=\theta(1, t)=0, t>0, \\
& w(x, 0)=w_{0}(x), w_{t}(x, 0)=w_{1}(x), \\
& \theta(x, 0)=\theta_{0}(x), 0<x<1 .
\end{align*}
$$

Assumptions:

(A3) σ is locally Lipschitz on $(0,+\infty)$. There exist constants $0<\sigma_{0} \leq \sigma_{1}$ such that $\sigma_{0}<\sigma(z) \leq \sigma_{1}$ for any $z>0 . \sigma$ is monotonically decreasing on $(0,+\infty)$.
(A4) $w_{0} \in H^{1}(0,1), w_{1} \in L^{2}(0,1), \theta_{0} \in W_{3}^{2}(0,1)$, $\theta_{0} \geq 0$ a.e. on $(0,1)$.
(A5) $f_{1}, f_{2} \in C^{2}(\mathbb{R})$ and there exists a constant c such that the functions $\left|f_{1}^{\prime}\right|,\left|f_{2}^{\prime}\right|,\left|f_{1}^{\prime \prime}\right|,\left|f_{2}^{\prime \prime}\right|$ are bounded on \mathbb{R} by the constant c.

Manoranjan, Yin (2006): For any $T>0$ there exists a global weak solution ($w(x, t), \theta(x, t)$) of the problem (5) such that $w \in L^{\infty}\left(0, T ; H^{1}(0,1)\right), \theta \in W_{3}^{2,1}((0,1) \times(0, T))$
Introduce for $t \geq 0$ and $x \in(0,1)$ the new functions

$$
f(x, t)=f_{1}(t)(1-x)+f_{2}(t) x, \psi(x, t)=w(x, t)-f(x, t) .
$$

We get

$$
\begin{align*}
& \psi_{t t}-\psi_{x x}+\sigma(\theta) \psi_{t}=f_{t t}(x, t)-f_{t}(x, t) \sigma(\theta) \\
& \theta_{t}-\theta_{x x}=\sigma(\theta)\left(\psi_{t}+f_{t}\right)^{2}, 0<x<1, t>0 \\
& \psi(0, t)=\psi(1, t)=0, \theta(0, t)=\theta(1, t)=0, t>0, \tag{6}\\
& \psi(x, 0)=\psi_{0}(x)=w_{0}(x)-f(x, 0) \\
& \psi_{t}(x, 0)=w_{1}(x)-f_{t}(x, 0) \\
& \theta(x, 0)=\theta_{0}(x), 0<x<1
\end{align*}
$$

Define $M=H_{0}^{1}(0,1) \times L^{2}(0,1) \times\left(W_{3}^{2}(0,1) \cap\{\theta \mid \theta \geq 0\right.$, a.e. $\left.\}\right)$ $\|(\psi, v, \theta)\|_{M}^{2}=\left\|\psi_{x}\right\|_{L^{2}(0,1)}^{2}+\|v\|_{L^{2}(0,1)}^{2}+\|\theta\|_{L^{2}(0,1)}^{2}$.

Introduce $Q=\mathbb{R}, \tau^{t}(s)=t+s, \varphi^{t}\left(s, u_{0}\right)=u\left(t+s, s, u_{0}\right)$ where $u\left(t, s, u_{0}\right)=\left(\psi(\cdot, t), \psi_{t}(\cdot, t), \theta(\cdot, t)\right)$ is a solution of (6) with $u\left(s, s, u_{0}\right)=u_{0}$.

Theorem 2 (Kalinin, Reitmann, Yumaguzin, 2011)
System (6) generates a cocycle (τ, φ) which admits a global pullback -B attractor.
Define $y=\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right)=\left(\begin{array}{c}w_{t}(x, t) \\ w(x, t) \\ \theta(x, t)\end{array}\right)$ and consider the evolution system

$$
\begin{equation*}
\frac{d y}{d t}=A y+B \xi, y(0)=y_{0} \tag{7}
\end{equation*}
$$

on rigged Hilbert spaces $Y_{1} \subset Y_{0} \subset Y_{-1}$ with \equiv a Hilbert space, $A: Y_{1} \rightarrow Y_{-1}, B: \equiv \rightarrow Y_{-1}$ linear operators and ξ a nonlinear function.

Let φ be an endomorphism of a measure space (M, \mathfrak{B}). The evolution operator U is given by the Koopman operator

$$
(U g)(x)=g(\varphi(x)),
$$

where g is a square-integrable function.
The adjoint is the Perron-Frobenius operator P. (Lasota, Mackey; 1985)

5. Parameter-dependent cocycles and bifurcations

Let ($Q_{\alpha}, \mathfrak{A}_{\alpha}, \mu_{\alpha}$) be a family of probability spaces depending on a parameter $\alpha \in \mathcal{A}$, where $\left(\mathcal{A}, \rho_{\mathcal{A}}\right)$ is a metric space. A parametric metric dynamical system (PMDS) is given by a family of maps $\tau_{\alpha}^{t}(\cdot): Q_{\alpha} \rightarrow Q \alpha$ which are measurable and satisfy the properties

1) $\tau_{\alpha}^{0}=\operatorname{id}_{Q_{\alpha}}$;
2) $\tau_{\alpha}^{t+s}=\tau_{\alpha}^{t} \circ \tau_{\alpha}^{s}, t, s \in \mathbb{Z}$.
$\left\{\tau_{\alpha}^{t}\right\}_{t \in \mathbb{Z}}$ is assumed to be measure preserving, i.e. $\tau_{\alpha}^{t}\left(\mu_{\alpha}\right)=$ $\alpha \in \mathcal{A}$
$\mu_{\alpha}, t \in \mathbb{Z}, \alpha \in \mathcal{A}$. Suppose that (M, \mathfrak{B}) is an other measurable space. A parametric cocycle over the PMDS is given by a family of parameter dependent maps $\varphi_{\alpha}^{t}(\cdot): Q_{\alpha} \times M \rightarrow M$ which are ($\mathfrak{A}_{\alpha} \otimes \mathfrak{B}, \mathfrak{B}$) measurable maps and satisfy the cocycle property. We write the parametric cocycle as a parametric skew product system

$$
(q, u) \in Q_{\alpha} \times M \mapsto\left(\tau_{\alpha}^{t}(q), \varphi_{\alpha}^{t}(q, u)\right)=: \hat{\varphi}_{\alpha}^{t}(q, u), t \in \mathbb{Z}, \alpha \in \mathcal{A} .
$$

A family of invariant measures $\left\{\hat{\mu}_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ for the parametric cocycle is a family of probability measures on $Q \times M$ which is invariant w.r.t the parametric skew product, i.e., $\hat{\varphi}_{\alpha}^{t}\left(\hat{\mu}_{\alpha}\right)=\hat{\mu}_{\alpha}$ and $\pi_{Q_{\alpha}} \hat{\mu}_{\alpha}=\mu_{\alpha}, \alpha \in \mathcal{A}$.

A parameter value α_{0} is called a bifurcation point of the family of invariant measures $\left\{\hat{\mu}_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ if this family is not structurally stable at α_{0}, i.e., if in any neighborhood of α_{0} there are parameter values $\alpha \in \mathcal{A}$ s. th. $\left\{\hat{\varphi}_{\alpha_{0}}^{t}\right\}$ and $\left\{\hat{\varphi}_{\alpha}^{t}\right\}$ are not topologically equivalent.

Arnold (1998)

Example 3 The Rényi map $\varphi_{\alpha}:[0,1] \rightarrow[0,1]$ is given by $\varphi_{\alpha}(x)=$ $\alpha x \bmod 1$ with $\alpha>1$. This map generates a metric dynamical system $\left(\left\{\varphi_{\alpha}^{t}\right\}, m\right)$, where m denotes the Lebesgue measure on the unit interval.

The Koopman operator U_{α} for $\alpha \in \mathbb{N}$ is given by

$$
\left(U_{\alpha} g\right)(x)=\alpha^{-1} \sum_{i=0}^{\alpha-1} g\left(\varphi_{\alpha, i}(x)\right)
$$

where $\varphi_{\alpha, i}$ is the inverse of the Rényi map on its i-th interval of monotonicity.
(Bandtlow, Antoniou and Suchanecki, 1997)

The associated Perron-Frobenius operator P_{α} of this map

$$
P_{\alpha}: L^{2}(m) \rightarrow L^{2}(m)
$$

is given by

$$
P_{\alpha} \eta=\frac{d}{d m} \int_{\varphi_{a}^{-1}(\cdot)} \eta d m,
$$

where $\frac{d}{d m}$ is the Radon-Nikodym derivative w.r.t. m. As positive function spaces \mathcal{H} we can use spaces which are densely and continuously embedded in $L^{2}(m)$:

- Banach spaces $\mathcal{E}_{c}(c>0)$ of entire functions of exponential type c;
- Fréchet spaces $\mathcal{H}\left(D_{r}\right)(r>1)$ of functions analytic in the open disk with radius r;
- Fréchet space C^{∞} of infinitely differentiable functions on the closed unit interval.

For $c<c^{\prime}$ and $r<r^{\prime}$ we have

$$
\mathcal{E}_{c} \hookrightarrow \mathcal{E}_{c^{\prime}} \hookrightarrow \mathcal{H}\left(D_{r^{\prime}}\right) \hookrightarrow \mathcal{H}\left(D_{r}\right) \hookrightarrow C^{\infty} \hookrightarrow L^{2}(m) .
$$

The map under perturbations: $\varphi_{\alpha}(q, u)=\varphi_{\alpha}(u)+q$. Consider the skew product system $\hat{\varphi}_{\alpha}: Q \times I \rightarrow Q \times I=: \widehat{I}$ with $\hat{\varphi}^{k}(q, u)=$ $\left(\tau^{k}(q), \varphi^{k}(q, u)\right)$ and the associated function spaces $L^{r}(\widehat{I})$.

References

[1] L. Arnold, Random Dynamical Systems. Springer, 1998.
[2] V. Baladi and M. Viana, Strong stochastic stability and rate of mixing for unimodal maps. Ann. Sci. École Norm. Sup., 29, 483 517, 1996.
[3] F. Bandtlow, I. Antoniou and Z. Suchanecki, Resonances of dynamical systems and Fredholm-Riesz operators on rigged Hilbert spaces. Computers Math. Appl. 34 (2-4), $95-102,1997$.
[4] Yu. M. Berezansky, Expansions in Eigenfunctions of Selfadjoint Operators. Amer. Math. Soc. Transl. 17, Providence, R. I., 1968.
[5] V. A. Boichenko, G.A. Leonov and V. Reitmann, Dimension Theory for Ordinary Differential Equations. Vieweg-Teubner Verlag, Wiesbaden, 2005.
[6] H. Crauel and F. Flandoli, Hausdorff dimension of invariant sets for random dynamical systems. Journal of Dynamics and Differential Equations, 10, 449-474, 1998.
[7] I. Gelfand and N. Vilenkin, Generalized functions, Vol. 4: Applications of Harmonic Analysis. Rigged Hilbert Spaces, Academic Press, New York, 1964.
[8] L. Glass, M.R. Guevera and A. Shrier, Universal bifurcations and the classification of cardiac arrhythmias. Ann. N. Y. Acad. Sci., 504, 168-178, 1987.
[9] P. Imkeller and P. Kloeden, On the computation of invariant measures in random dynamical systems. Stochastics and Dynamics, 3 (2), 247 - 265, 2003.
[10] Yu. Kalinin, V. Reitmann and N. Yumaguzin, Asymptotic behavior of Maxwell's equation in one-space dimension with thermal effect. Discrete and Continuous Dynamical Systems, 2, 754-762, 2011.
[11] P. E. Kloeden and B. Schmalfuss, Nonautonomous systems, cocycle attractors and variable time-step discretization. Numerical Algorithms, 14 (1-3), 141-152, 1997.
[12] A. Lasota and M. C. Mackey, Probabilistic Propertie of Deterministic Systems. Cambridge University Press, Cambridge, 1985.
[13] R. V. Manoranjan and H. M. Yin, On two-phase Stefan problem arising from a microwave heating process. Discrete and Continuous Dynamical Systems, Serie A, 15, 1155-1186, 2006.
[14] V. Reitmann, Dynamical Systems, Attractors and Estimates of their Dimension. St. Petersburg State University Press, St. Petersburg, 2012 (Russian).
[15] V. Reitmann and A. Slepukhin, Upper Hausdorff dimension estimates for negatively invariant sets of local cocycles. Vestn. St. Petersburg State Univers., Ser. 1, vyp. 4, 61-70, 2011.
[16] V. Rokhlin, Exact endomorphisms of a Lebesgue space. Am. Math. Soc. Transl., 39 (2), 1-36, 1964.

