Embedding of compact invariant sets of dynamical systems on infinite-dimensional manifolds into finite-dimensional spaces

S. Popov and V. Reitmann *

Saint-Petersburg State University, Russia Department of Mathematics and Mechanics

9th AIMS Conference on Dynamical Systems,Differential Equations and ApplicationsJuly 1 - 5, 2012, Orlando, Florida, USA

* Supported by DAAD and the German-Russian Interdisciplinary Science Center (G-RISC)

1 Feedback control systems

Suppose

$$\dot{y} = f(y) \tag{1.1}$$

with a vector function $f : \mathbb{R}^n \to \mathbb{R}^n$ (*"parent flow"*) is given. Then (1.1) can be written as *feedback control system*

$$\dot{y} = Ay + B\phi \left(Cy(t) \right) \,, \tag{1.2}$$

where A, B and C are arbitrary $n \times n$ matrices (B and C regular) and $\phi(\sigma) = B^{-1}[f(C^{-1}\sigma) - AC^{-1}\sigma], \sigma \in \mathbb{R}^n$. Consider the more general system

$$\dot{y} = Ay + B\xi(t) , \ \xi(t) = \phi(Cy(t), \xi_0)$$
 (1.3)

with the $n \times n$, $n \times m$ and $l \times m$ matrices A, B and C and the nonlinearity ϕ which can be smooth, piecewise smooth or a hysteresis function.

Fig. 1

Example 1.1 dry friction, elasto-plastic deformation (Fig. 1) \Box **Remark 1.1** (1.3) can also describe an infinite-dimensional system. Suppose $Y_1 \subset Y_0 \subset Y_{-1}$ are densely and continuously embedded Hilbert spaces (*rigged Hilbert space structure*), Ξ and W are also Hilbert spaces,

$$A:Y_1\to Y_{-1}\;,\quad B:\Xi\to Y_{-1}\;,\quad C:Y_1\to W$$

are bounded linear operators, $\phi: W \to \Xi$ is a nonlinearity, and the equation

$$\dot{y} = Ay + B\phi\left(Cy\right) \tag{1.4}$$

is the *state space realization model* for well-posed input-output (measurement) maps.

- ODE case: $Y_1 = Y_0 = Y_{-1} = \mathbb{R}^n$, $W = \mathbb{R}^s$, $\Xi = \mathbb{R}^r$
- <u>PDE (Boundary control system)</u> $Y_0 = L^2(0,1), \ Y_1 = W^{1,2}(0,1), \ Y_{-1} = Y^*, \ A : Y_1 \to Y_{-1},$ $(Au, v)_{1,-1} = \int_0^1 (Au)(x)v(x)dx = -\int_0^1 (au_xv_x + buv)dx,$ $\forall u, v \in W^{1,2}(0,1)$

 $\Xi = \mathbb{R}, \ B : \Xi \to Y_{-1}, \ B = a\delta(x-1), \ g : \mathbb{R} \to \mathbb{R}, \ a > 0, b > 0 \text{ numbers}$

$$\frac{\partial u}{\partial t} = au_{xx} - bu, \ 0 < x < 1,
u_x(0,t) = 0, \ u_x(1,t) = g(w(t)), \ u(\cdot,0) = u_0
g(w(t)) = Cu(x,t) = \int_0^1 c(x)u(x,t)dx, \ c \in L^2(0,1).$$
(1.5)

• Evolutionary variational inequalities

Suppose $Y_1 \subset Y_0 \subset Y_{-1}$ is a real Hilbert space rigging structure with $A \in \mathcal{L}(Y_1, Y_{-1})$. Assume that Ξ and W are two real Hilbert spaces with scalar products $(\cdot, \cdot)_{\Xi}, (\cdot, \cdot)_W$ and norms $\|\cdot\|_{\Xi}, \|\cdot\|_W$, respectively. Introduce the linear continuous operators

$$B: \Xi \to Y_{-1}, \quad C: Y_1 \to W$$

and define the set-valued map

$$\varphi: \mathbb{R}_+ \times W \to 2^{\Xi}$$

and the map

$$\psi: Y_1 \to \mathbb{R}_+ \cup \{+\infty\}.$$

Consider the evolutionary variational inequality (Duvant, Lions, 1976)

$$(\dot{y} - Ay - B\xi, \eta - y)_{-1,1} + \psi(\eta) - \psi(y) \le 0, \ \forall \eta \in Y,$$
 (1.6)

$$w(t) = Cy(t), \xi(t) \in \varphi(t, w(t)), y(0) = y_0 \in Y_0.$$
(1.7)

Note that in applications φ is a material law nonlinearity, ψ is a contacttype or friction functional and w(t) = Cy(t) is the output of the inequality. In the contact free case when $\psi = 0$ the evolutionary variational inequality (1.6 - 1.7) is equivalent to an *evolution equation* with a set-valued nonlinearity φ given by

$$\dot{y} = Ay + B\xi$$
 in Y_{-1} , (1.8)

$$w(t) = Cy(t), \ \xi(t) \in \varphi(t, w(t)), \ y(0) = y_0 \in Y_0.$$
(1.9)

(Likhtarnikov, Yakubovich, 1976; Kantz, Reitmann, 2004)

• <u>Functional differential equations</u> (FDE's or PDE's with delay)

$$\dot{y}(t) = \sum_{k=0}^{m} A_k y(t+r_k) + B\phi(Cy_t), -r \le r_m < \dots < r_1 < r_0 = 0, \quad (1.10)$$

• Microwave heating process

$$\begin{array}{ll}
 w_{tt} - w_{xx} + \sigma(\theta)w_t = 0, & 0 < x < 1, \quad t > 0 \\
 \theta_t - \theta_{xx} = \sigma(\theta)w_t^2, & 0 < x < 1, \quad t > 0 \\
 w(0,t) = f_1(t), \quad w(1,t) = f_2(t), & 0 < x < 1, \quad t > 0 \\
 \theta(0,t) = \theta(1,t) = 0, & t > 0 \\
 w(x,0) = w_0(x), \quad w_t(x,0) = w_1(x), & 0 < x < 1 \\
 \theta(x,0) = \theta_0(x). & 0 < x < 1
\end{array}$$
(1.12)

Suppose $f_1(t) = f_2(t) \equiv 0$. Then we can write (1.12) formally as the system

$$\frac{\partial w}{\partial t} = Aw + B\xi(w_t, \theta)$$

with

$$A = \begin{pmatrix} 0 & I & 0 \\ -\Delta & 0 & 0 \\ -\Delta & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ -I & 0 \\ 0 & I \end{pmatrix}$$

and

$$\xi(v,\theta) = \left(\begin{array}{c} \xi_1(v,\theta)\\ \xi_2(v,\theta) \end{array}\right) = \left(\begin{array}{c} \sigma(\theta)v\\ \sigma(\theta)v^2 \end{array}\right).$$

(Manoranjan, Yin, 2002; Kalinin, Reitmann, Yumaguzin, 2011; Popov, 2011)

• Maxwell-Dirac equation

$$\left. \begin{array}{l} (-i\gamma^{\mu}\partial_{\mu} + m)\psi = gv^{\mu}\gamma_{\mu}\psi, \\ v_{\mu} = (\Delta - \partial_{0}^{2})v_{\mu} = g\Psi\gamma_{\mu}\psi, \\ \partial^{\mu}v_{\mu} = 0. \end{array} \right\}$$

$$(1.13)$$

Here the v^{μ} 's are the components of the electromagnetic vector field, ψ is the Dirac spinor field. The positive definite inner product in spin space is denoted by $\psi^+\psi$ and Ψ denotes $\psi^+\gamma^0$. The γ 's are operators in spin space which satisfy $\gamma^{\mu}\gamma^{\nu} + \gamma\nu\gamma\mu = 2g^{\mu\nu}$ ($g^{00} = 1, g^{11} = -1, g^{\mu\nu} = 0, \mu \neq \nu$). Existence of solutions (Chadam, 1973)

Attractor type: solitary waves (Komech, Komech, 2010)

Some solution conceptions for (1.3)

1) Weak solutions in some Sobolev space

2) Classical solutions for differential inclusions

3) Filippov solutions, i.e. absolutely continuous functions $y(\cdot)$ which satisfy (1.3) almost everywhere.

H1) For any initial state (1.3) has exactly one Filippov solution on $[0, \infty)$.

2 The reconstruction principle and the cone condition

Let $\gamma = \{y(t) | t \ge 0\}$ be a semi-orbit of (1.3), Π the projection on some plane E (Fig. 2).

How to choose a projection $\Pi : \mathbb{R}^3 \to E \cong \mathbb{R}^2$ such that $\Pi : \gamma \to \Pi \gamma$ is one-to-one and continuous in \mathcal{A} ?

H2) (*cone condition*) There exist a set $S \subset \mathbb{R}^n$ and an $n \times n$ -matrix $P = P^*$ having 2 negative and (n-2) positive eigenvalues such that for any two solutions $y_1(\cdot), y_2(\cdot)$ of (1.3) with $y_i(t) \in S, \forall t \ge 0, i = 1, 2$, we

have with $V(y) = y^* P y$ the inequality

$$V(y_1(t) - y_2(t)) \le 0, \quad \forall t \ge 0$$
 (2.1)

(Smith, 1986, Foias et al, 1988, Robinson, 1993)

Geometrical interpretation of the cone condition for n = 3

Assume $V(y) = y^* P y$ is a quadratic form satisfying (2.1) along the solutions of (1.3), $K := \{y | V(y) \leq 0\}$ is a 2-dimensional cone, $\mathbb{R}^3 \setminus K$ is a 1-dimensional cone (Fig.3). Let l be the direction of the main axis of $\mathbb{R}^3 \setminus K$ with $l^* Pl > 0$, E is the orthogonal to l plane through the origin, Π is the orthogonal projection on E.

Suppose that $y_1(\cdot), y_2(\cdot)$ are two arbitrary distinct solutions of (1.3) in S, i.e. $y_1(t) \neq y_2(t) \quad \forall t \geq 0, y_1(t), y_2(t) \in S, \quad \forall t \geq 0$. From (2.1) we have $V(y_1(t) - y_2(t)) \leq 0, \ \forall t \geq 0$, i.e. $y_1(t) - y_2(t) \in K, \quad \forall t \geq 0$. Then

$$\Pi y_1(t) \neq \Pi y_2(t), \quad \forall t \ge 0.$$
(2.2)

Assume the opposite, i.e. assume that

$$\exists t_0 \ge 0 : \Pi y_1(t_0) = \Pi y_2(t_0) .$$
(2.3)

It follows from (2.3) that $\Pi [y_1(t_0) - y_2(t_0)] = 0$, i.e. the point $y_1(t_0) - y_2(t_0)$ is projected under Π into 0. But then there exists a $k \neq 0$ such that $y_1(t_0) - y_2(t_0) = kl$. Consequently we have $V(kl) = k^2 l^* Pl > 0$, a contradiction to the fact that $V(y_1(t_0) - y_2(t_0)) \leq 0$.

3 Frequency-domain methods

Suppose A, B and C are matrices of order $n \times n, n \times m$ and $l \times n$, respectively, $F(x, \xi)$ is a *Hermitian form* on $\mathbb{C}^n \times \mathbb{C}^m$, i.e. a quadratic form which takes only real values. The pair (A, B) is called *stabilizable* if there exists an $n \times m$ matrix D such that A + BD is Hurwitzian, i.e. has only eigenvalues with negative real part.

Theorem 3.1 (Frequency theorem; Yakubovich, 1962; Kalman, 1963) Let the pair (A, B) be stabilizable and det $(i\omega I - A) \neq 0, \forall \omega \in \mathbb{R}$. a) For the existence of a real symmetric $n \times n$ -matrix P satisfying the Riccati inequality

$$2\operatorname{Re} x^* P(Ax + B\xi) + F(x,\xi) < 0,$$

$$\forall x \in \mathbb{C}^n \quad \forall \xi \in \mathbb{C}^m, |x| + |\xi| \neq 0$$
(3.1)

it is necessary and sufficient that the frequency-domain condition

$$F((i\omega I - A)^{-1}B\xi, \xi) < 0,$$

$$\forall \xi \in \mathbb{C}^m, \xi \neq 0 \quad \forall \omega \in \mathbb{R}$$
(3.2)

is satisfied.

b) A matrix $P = P^*$ satisfying (3.1) can be computed in a finite number of steps.

Consider the system

$$\dot{y} = Ay + B\phi(Cy(t)) , \qquad (3.3)$$

where A, B and C are matrices of order $n \times n, n \times 1$ and $1 \times n$, respectively. Introduce the transfer function $\chi(z) = C(zI - A)^{-1}B$ for $z \in \mathbb{C}$: $\det(zI - A) \neq 0$.

 $\phi:\mathbb{R}\to\mathbb{R}$ satisfies the following condition:

(H3) There exist parameters $\mu_1 < 0 < \mu_2$ such that

$$\mu_1(\sigma_1 - \sigma_2)^2 \le [\phi(\sigma_1) - \phi(\sigma_2)](\sigma_1 - \sigma_2) \le \mu_2(\sigma_1 - \sigma_2)^2$$

$$\forall \sigma_1, \sigma_2 \in \mathbb{R}$$
(3.4)

Remark 3.1 If ϕ is C^1 the condition (3.4) can be written in the following way:

(H3)' There exist parameters $\mu_1 < 0 < \mu_2$ such that

$$\mu_1 \le \phi'(\sigma) \le \mu_2, \quad \forall \, \sigma \in \mathbb{R}$$
 (3.4)'

Theorem 3.2 Suppose that for ϕ from (3.3) the condition (H3) is satis field and there exists a $\lambda > 0$ such that the following holds:

- 1) The pair $(A + \lambda I, B)$ is stabilizable ;

2) The matrix $A + \lambda I$ has exactly two eigenvalues with positive real part and (n-2) with negative real part; (Gap

3) Re
$$[1 + \mu_1 \chi(i\omega - \lambda)] [1 + \mu_2 \chi(i\omega - \lambda)]^* > 0, \forall \omega \in \mathbb{R};$$
 J condition)

Then there exists an $n \times n$ -matrix $P = P^*$ having 2 negative and (n-2)positive eigenvalues, and a number $\varepsilon > 0$ such that with the function $V(y) = y^* P y$ the inequality

$$\frac{d}{dt}V(y_1(t) - y_2(t)) + \lambda V(y_1(t) - y_2(t)) - \varepsilon |y_1(t) - y_2(t)|^2, \ \forall t \ge 0$$
(3.5)

(Squeezing property)

is satisfied for any two solutions $y_1(\cdot), y_2(\cdot)$ of (3.3).

Geometrical interpretation of the frequency-domain condition

Fig. 4

4 Amenable solutions and essential modes

Definition 4.1 (*R. A. Smith, 1987*) Suppose $\lambda > 0$ is a number. A solution $y(\cdot)$ of (1.3) is called amenable if there exists a number $\tau \in \mathbb{R}$ such that $y(t) \in S$, $\forall t \leq \tau$, and $\int_{-\infty}^{\tau} e^{2\lambda t} |y(t)|^2 dt < +\infty$.

Remark 4.1 If (1.3) has a compact attractor then all solutions inside the attractor are amenable.

Theorem 4.1 Suppose that the conditions of Theorem 3.2 are satisfied with a parameter $\lambda > 0$ and $P = P^*$ is the $n \times n$ matrix satisfying

$$2y^*P[(A+\lambda I)y + B\psi] + (\mu_2 Cy - \psi)(\psi - \mu_1 Cy) \le -\varepsilon [|y|^2 + |\psi|^2]$$

$$\forall y \in \mathbb{R}^n, \ \forall \psi \in \mathbb{R}.$$

and having 2 negative and (n-2) positive eigenvalues.

Choose a matrix $Q = Q^*$ of order $n \times n$ such that

$$Q^*PQ = \begin{pmatrix} -1 & & & \\ & -1 & & 0 \\ & & +1 & & \\ 0 & & \ddots & \\ & & & +1 \end{pmatrix}$$

and define the linear map $\Pi : \mathbb{R}^n \to \mathbb{R}^2$ by $\Pi y := u$ where $\binom{u}{v} = Q^{-1}y$ with $u \in \mathbb{R}^2$, $v \in \mathbb{R}^{n-2}$. Then if \mathcal{A} is the set of amenable solution of (3.3) the map

$$\Pi : \mathcal{A} \to \Pi \mathcal{A} \tag{4.1}$$

is a homeomorphism, i.e. one-to-one and bicontinuous.

Definition 4.2 (O. Ladyzhenskaya, 1987) Suppose that (1.4) has in the (infinite-dimensional) phase-space Y_0 an attractor \mathcal{A} and a finite-dimensional projector Π with the following property: For any two orbits γ_1, γ_2 of the attractor \mathcal{A} the condition $\Pi \gamma_1 = \Pi \gamma_2$ implies $\gamma_1 = \gamma_2$. Then we say that the number of essential or determining modes of (1.4) for \mathcal{A} is finite.

Corollary 4.1 Suppose that the conditions of Theorem 3.2 are satisfied and (3.3) has a compact attractor \mathcal{A} . Then the number of essential modes for \mathcal{A} is two.

Remark 4.2 In many cases in the system $\dot{y} = Ay + B\phi(Cy)$ (1.4) we have a symmetric $A = A^* : Y_1 \to Y_{-1}$. If the embedding $Y_1 \subset Y_{-1}$ is completely continuous then the operator A has a system of eigenfunctions (modes) $\{w_j\}$ associated to eigenvalues $\{\lambda_j\}$ by $Aw_j = \lambda_j w_j, w_j \in$ $Y_1, \lambda_i < \lambda_{i+1}, \lambda_i \to +\infty, (w_j, w_k) = \delta_j^k$ such that $\{w_j\}$ is a basis of Y_1 , i.e. any element y can be written as $y = \sum y_j w_j, \sum y_j^2 < \infty$. Then $\Pi y := (y_1, y_2) \in \mathbb{R}^2$ or, more general, $\Pi y = (y_1, \ldots, y_i) \in \mathbb{R}^i$ is a

Then $\Pi y := (y_1, y_2) \in \mathbb{R}^2$ or, more general, $\Pi y = (y_1, \dots, y_i) \in \mathbb{R}^n$ is a finite-dimensional projection. Physically this means that the *total energy* of an orbit is dominated by the energy of the first i modes.

5 Lipschitz manifolds and the extension procedure

Consider (3.3) under the assumptions of Theorem 4.1 and let

$$h: \Pi \mathcal{A} \to \mathcal{A} \tag{5.1}$$

be the inverse map of $\Pi : \mathcal{A} \to \Pi \mathcal{A}$, (4.1), where \mathcal{A} is again the set of amenable solutions.

It follows from

$$2 |\Pi p_1 - \Pi p_2|^2 \ge |Q^{-1}(p_1 - p_2)|^2 \ge |\Pi p_1 - \Pi p_2|^2 \qquad \forall p_1, p_2 \in \gamma_1, \gamma_2.$$

that

$$2 |u_1 - u_2|^2 \ge |Q^{-1}(h(u_1) - h(u_2))|^2 \ge |u_1 - u_2| ,$$

$$\forall u_1, u_2 \in \Pi \mathcal{A} .$$
 (5.2)

If $y(\cdot)$ is an amenable solution of (3.3) then $u(t) := \prod y(t)$ is the solution of the

2-dimensional reduced or observation ODE

$$\dot{u} = \underbrace{\prod f(h(u))}_{=:g(u)} \qquad (f(y) = Ay + B\phi(Cy)). \tag{5.3}$$

The reduced vector field g is defined only on the closed set $\Pi \mathcal{A} \subset E \cong \mathbb{R}^2$, since h is defined only on $\Pi \mathcal{A}$. Can we extend h to a Lipschitz continuous map

$$\tilde{h}: E \cong \mathbb{R}^2 \to \mathbb{R}^n (Y_0)$$
?

Assume for a moment that this is possible. Then it holds:

1) $\tilde{g} := \Pi(f(\tilde{h}))$ is a Lipschitz vector field on $E \cong \mathbb{R}^2$ if f is Lipschitz : $\tilde{g} = \Pi \circ f \circ \tilde{h}$.

It follows that all solutions of (3.2) exist and are unique. The observation ODE (5.2) can be used for the reconstruction of the set \mathcal{A} of (3.3).

2) The set \mathcal{A} of amenable solutions of (3.3) lies in the set

$$\mathcal{M} := \{ y \in \mathbb{R}^n | y = \tilde{H}(u), \ u \in \mathbb{R}^2 \} .$$

$$(Y_0) \qquad (\mathbb{R}^m) \qquad (5.4)$$

Since \tilde{h} is Lipschitz the set (5.4) is a 2-dimensional (*m*-dimensional) Lipschitz manifold. If \mathcal{A} is the global attractor the set \mathcal{M} attracts all orbits of (3.3) from $\mathbb{R}^n(Y_0)$. In this case \mathcal{M} is called the *inertial manifold* of (3.3) (Foias et al, 1988, Robinson, 1993).

Theorem 5.1 (Stein's extension theorem Stein, 1970)

Let X be a closed subset of \mathbb{R}^m , $H(=Y_0)$ be a Hilbert space, and $h: X \to H$ be a continuous function.

Then there is a continuous extension $\tilde{h} : \mathbb{R}^m \to H$ and there exists a K = K(m) such that if $|h(x) - h(y)| \leq C|x - y|, \forall x, y \in X$, then $|\tilde{h}(x) - \tilde{h}(y) \leq KC|x - y|, \forall x, y \in \mathbb{R}^m$.

Corollary 5.1 Under the conditions of Theorem 4.1 the reduced vector field (5.2) can be extended to a Lipschitz vector field in $E \cong \mathbb{R}^2$. Any amenable solution y of the infinite-dimensional vector field $\dot{y} = Ay + B\phi$ in the phase space Y_0 can be represented as $y = \tilde{h}(u(t))$, where u(t) is the unique solution of the reduced equation (5.2) with initial state $u(0) = \prod y(0)$.

6 Constructing a reduced system from measurements Suppose

$$\dot{y} = f(y) \tag{6.1}$$

is a given (unknown) dissipative system in \mathbb{R}^n with attractor \mathcal{A} .

Step 1: Choice of the linear part

Choose a number $\lambda > 0$ and matrices A, B and C of order $n \times n, n \times 1$ and $1 \times n$, respectively, such that $(A + \lambda I, B)$ is stabilizable, and $A + \lambda I$ has 2(m) eigenvalues with positive real part and n - 2 eigenvalues with negative real part.

Step 2: Reconstruction of the class of nonlinearities

Calculate on [0, T] the linear semigroup $S(t) = e^{At}$ with A from Step 1. Take an $\varepsilon < 0$ (tolerance), a natural number N and observe near the attractor the solutions $y_i(\cdot), i = 1, 2, \ldots, N$, of (6.1) on [0, T]. Find for any $i = 1, 2, \ldots, N$ a solution $\phi_i \in L^{\infty}(0, T; \mathbb{R}^n)$ of the linear inequality

$$\sup_{t \in [0,T]} |Cy_i(t) - CS(t)y_i(0) - \int_0^t CS(t-s)B\phi_i(s)ds| < \varepsilon .$$
(6.2)

It follows that $\phi_i(t) \approx \phi(Cy_i(t))$ in the sense of $L^2(0, T)$, where $\dot{y}_i(t) = Ay_i + B\phi(Cy_i(t))$ on [0, T]. Determine two constants $-\infty \leq \mu_1 < \mu_2 \leq +\infty \ (\mu_2 < +\infty \text{ if } \mu_1 = -\infty)$ and $\mu_1 > -\infty$ if $\mu_2 = +\infty$) such that $\mu_1[C(y_i(t) - y_j(t))]^2 \leq [\phi_i(t) - \phi_j(t)] C [y_i(t) - y_j(t)]$ $\leq \mu_2 [C(y_i(t) - y_j(t))]^2$, i, j = 1, ..., N $t \in [0, T]$. (6.3)

Step 3: Graphic test of the frequency-domain / gap condition Compute the frequency-domain characteristic $\chi(i\omega - \lambda) = C((i\omega - \lambda)I - A)^{-1}B$ and compare with the circle $C[\mu_1, \mu_2]$ with $\mu_1 < \mu_2$ from Step 2 (Fig. 5).

Fig. 5

If there is no intersection between $\chi(i\omega - \lambda)$ and $C[\mu_1, \mu_2]$ go to Step 4. In other case change A, B, C or m and begin again with Step 1. Step 4: Calculation of a homeomorphism $\Pi : \mathcal{A} \to \Pi \mathcal{A}$

Find with A, B, C from Step 1 and $\mu_1 < \mu_2$ from Step 3 an $n \times n$ matrix $P = P^*$ of the matrix inequality

$$2y^*P\left[(A+AI)y+B\psi\right] + (\mu_2 Cy-\psi) \left(\psi-\mu_1 Cy\right) < 0,$$

$$\forall y \in \mathbb{R}^n, \ \forall \psi \in \mathbb{R}, |y|+|\psi| \neq 0.$$
(6.4)

Such a solution exists by the frequency theorem and is computable in a finite number of steps. Any solution $P = P^*$ of (6.3) has 2 negative and n-2 positive eigenvalues. Define a matrix $Q = Q^*$ through

$$Q^*PQ = \begin{pmatrix} -1 & & & \\ & -1 & & 0 \\ & & +1 & \\ 0 & & \ddots & \\ & & & +1 \end{pmatrix}$$
. Then the projection is $\Pi : \mathbb{R}^n \to \mathbb{R}^2$

defined by $\Pi y = u, y \in \mathbb{R}^n, u \in \mathbb{R}^2, v \in \mathbb{R}^{n-2}$, s.th. $\binom{u}{v} = Q^{-1}y$. It follows from Theorem 4.1 that of \mathcal{A} is the amenable set of (6.1) then $\Pi : \mathcal{A} \to \Pi \mathcal{A}$ is a homeomorphism.

Step 5: Determination of a reduced ODE for the full equation Let $\Pi : \mathcal{A} \to \Pi \mathcal{A}$ be the homeomorphism from Step 4. Determine a reduced 2-dimensional ODE $\dot{u} = \underbrace{\Pi f(\tilde{h}(u))}_{\tilde{g}(u)}$ from the observations $\Pi y_i(t)$,

where $y_i(t)$ are arbitrary solutions of (6.1) near the attractor and use constructively the extension theorem of Stein to extend this vector field from the closed set $\Pi \mathcal{A} \subset E \cong \mathbb{R}^2$ to a Lipschitz vector field on the whole E.

7 When is a given linear projection a homeomorphism on the attractor?

Suppose

$$\dot{y} = f(y) \tag{7.1}$$

is on ODE in \mathbb{R}^n . \mathcal{A} is the set of amenable solutions and $\Pi : \mathbb{R}^n \to \mathbb{R}^k$ is a given linear projection. Under what conditions is $\Pi : \mathcal{A} \to \Pi \mathcal{A}$ a homeomorphism?

Write (7.1) again in the form

$$\dot{y} = Ay + B\phi\left(\Pi y\right)\,,\tag{7.2}$$

where A and B are $n \times n$ and $n \times m$ matrices, and $B\phi : \mathbb{R}^n \to \mathbb{R}^n$ is defined by $B\phi(\Pi y) := f(y) - Ay$. Assume that f(0) = 0 and the solutions of (7.1) exist on \mathbb{R}_+ and are unique. Let $K \subset \mathbb{R}^n$ be an invariant and absorving

cone for (7.2) having the property

$$K \cap \{ y \in \mathbb{R}^n \, | \, \Pi y = 0 \} = \{ 0 \} .$$
(7.3)

If (7.3) is satisfied then $\Pi : \mathcal{A} \to \Pi \mathcal{A}$ is a homeomorphism.

 $(\mathbf{H3})$ " There exists a $k \times m$ matrix M such that

 $0 \le (\Pi(y_1 - y_2))^* M[\phi(\Pi y_1) - \phi(\Pi y_2)], \quad \forall y_1, y_2 \in \mathbb{R}^n.$

Define the Hermitian form $F_{\mathbb{C}}(y,\xi) := \operatorname{Re}(y^*\Pi^*M\xi), y \in \mathbb{C}^n, \xi \in \mathbb{C}^m$, and the transfer matrix $\chi(i\omega) := (i\omega I - A)^{-1}B$.

Theorem 7.1 Suppose that (H3)" is satisfied and there exists a $\delta > 0$ such that the following holds:

- 1) The pair $(A + \lambda I, B)$ is stabilizable;
- 2) The matrix $A + \lambda I$ has k eigenvalues with positive real part and n k with negative real part;
- 3) Re $F_{\mathbb{C}}(\chi(i\omega \lambda)\xi, \xi) < 0$, $\forall \xi \in \mathbb{C}^m, \xi \neq 0, \forall \omega \in \mathbb{R};$
- 4) $\xi^* B^* \Pi^* M \xi \ge 0$, $\forall \xi \in \mathbb{R}^m$.

Then there exists a symmetric $n \times n$ matrix P having k negative and n - k positive eigenvalues such that the following holds:

- a) The k-dimensional cone $K := \{y \in \mathbb{R}^n | y^* P y \leq 0\}$ is positively invariant for all solutions of (7.1);
- b) $K \cap \{y \in \mathbb{R}^n | \Pi y = 0\} = \{0\}$;
- c) K absorbs \mathcal{A} and, consequently, $\Pi : \mathcal{A} \to \Pi \mathcal{A} \subset \mathbb{R}^k$ is a homeomorphism.

(Kantz, Reitmann, 2004)

8 Dynamical systems on Banach manifolds

Let \mathcal{M} be an *infinite-dimensional Banach manifold* and $F: \mathcal{M} \to T\mathcal{M}$ be an smooth vector field on \mathcal{M} .

Let us consider the equation

$$\dot{u} = F(u)$$

and the dynamical system on \mathcal{M} : $(\{\varphi^t\}_{t\in\mathbb{R}}, \mathcal{M}), \varphi^t(u_0) \equiv u(t, u_0), u(0, u_0) = u_0.$

Let $u_0 \in \mathcal{M}$ be a given point and $\{\varphi^t(u_0)\}_{t\geq 0}$ be the associated trajectory A map $h : \mathcal{M} \to \mathbb{R}$ is called *observation function*

Let T be the interval between the measurements. Then we get the sequence $z_0 = h(u_0), z_1 = h(\varphi^T(u_0)), \ldots, z_i = h(\varphi^{iT}(u_0), \ldots)$ An *embedding function* is a map

$$\Phi_{\varphi,h}(u) := (h(u), h(\varphi^T(u)), \dots, h(\varphi^{(k-1)T}(u))), \ u \in \mathcal{M}$$

(Takens, 1981)

Theorem 8.1 [Takens, 1981] Let \mathcal{M} be a compact manifold of dimension n. Let $k \in \mathbb{N}$, such that $k \geq 2n + 1$. Then the set (φ, h) of pairs for which the embedding function $\Phi_{\varphi,h}$ is a topological embedding is open and dense in the space $Diff^r(\mathcal{M}) \times C^r(\mathcal{M}, \mathbb{R})$ for $r \geq 1$. **Theorem 8.2** [Robinson, 2005] Let H be a Hilbert space and \mathcal{A} be a compact set whose fractal dimension satisfies $\dim_f(\mathcal{A}) < d, d \in \mathbb{N}$, and which has thickness τ . Choose $k > (2 + \tau)d$, and suppose further that \mathcal{A} is an invariant set for a Lipschitz map $\varphi : H \to H$, such that

- the set Γ of points in \mathcal{A} such that $\varphi(x) = x$ satisfies $\dim_f(\Gamma) < 1/2$, and
- \mathcal{A} contains no periodic orbits of φ of period $2, \ldots, k$.

Then a prevalent set of Lipschitz maps $h : H \to \mathbb{R}$ make the embedding $\Phi_{\varphi,h} : H \to \mathbb{R}^k$ one-to-one on \mathcal{A} .

Theorem 8.3 [Okon, 2002] Let \mathcal{M} be a C^{∞} - manifold with one chart $x : \mathcal{M} \to U$ where $U \subset H$ is bounded and convex, H is a Banach space. Let ρ_x be the metric which is induced by the chart x and let $K \subset \mathcal{M}$ be a compact with $\dim_f(K) \leq d$, N > 2d, and $\alpha < (N - 2d)/(N(1 + d))$ Then the set of all $\psi \in C_b^k(\mathcal{M}, \mathbb{R}^N)$ such that

$$\exists C > 0 \ \forall v, w \in K : C |\psi(v) - \psi(w)|^{\alpha} \le \rho_x(v, w)$$

is prevalent in $C_b^k(\mathcal{M}, \mathbb{R}^N)$.

Let $\dim_{cor}(X) = \lim_{\varepsilon \to 0} \frac{\ln C(\varepsilon)}{\ln \varepsilon}$ be the correlation dimension. Here $C(\varepsilon)$ is the correlation integral

$$C(\varepsilon) = \lim_{N \to \infty} \frac{1}{N^2} \sum_{i,j=1}^{N} \Theta(\varepsilon - ||x_i - x_j||),$$

where x_i are vectors from X and $\Theta(x)$ is the Heaviside function:

$$\Theta(x) = \begin{cases} 1, x \ge 0\\ 0, x < 0. \end{cases}$$

Fig. 6 The estimation of the correlation dimension for the Microwave heating process (1.12)

Fig. 7 Solution of Maxwell-Dirac equation (Das, 1993) A_u

Fig. 8 Solution of Maxwell-Dirac equation (1.13) A_v

Fig. 10 Solution of Maxwell-Dirac equation (1.13) $\text{Im}(\psi_1)$

Fig. 11 The estimation of the correlation dimension for the Maxwell-Dirac equation (1.13)

References

- Boichenko, V. A., Leonov, G. A., and V. Reitmann, Dimension Theory for Ordinary Differential Equations. Teubner, Stuttgart – Leipzig (2004).
- [2] Foias, C., Sell, G.R. and R. Temam, Inertial manifolds for nonlinear evolution equations. J. Diff. Eq. 73, 309 - 353 (1988).
- [3] Kantz, H. and V. Reitmann, Determining functionals for bifurcations on a finite time-interval in variational inequalities. Proc. Equadiff 2003, Hasselt, (Submitted).
- [4] Kantz, H. and V. Reitmann, Frequency domain conditions for the existence of almost periodic solutions in evolutionary variational inequalities. Stochastics & Dynamics (Submitted).
- [5] Ladyzhenskaya, O. A., On estimates of the fractal dimension and the number of determining modes for invariant sets of dynamical systems. Zapiskii nauchnich seminarov LOMI.
 163, 105 129 (1987).
- [6] Likhtarnikov, A. L. and V. A. Yakubovich, *The frequency theorem for equations of evolutionary type*. Siberian Math. J. 17 5, 790 803 (1976).
- [7] Robinson, J. C., Inertial manifolds and the cone condition.
 Dyn. Syst. Appl. 2 3, 311 330 (1993).
- [8] Salomon, D., Realization theory in Hilbert space. Math. Systems Theory 21, 147 164 (1989).
- [9] Sauer, T., Yorke, J. A. and M. Casdagli, *Embedology.* J. Stat. Phys. 65, 579 – 616 (1991).
- [10] Smith, R. A., Orbital stability of ordinary differential equations. J. Differential Equations 69, 265 - 287 (1986).
- [11] Stein, E. M., Singular integrals and differentialibility properties of functions. Princeton University Press, Princeton, New Jersey (1970).

- [12] Webb, G. F., Functional differential equations and nonlinear semigroups in L^P-spaces. J. Differential Equations 20, 71 – 89 (1996).
- [13] Ermakov, I. V., Kalinin, Yu. N. and V. Reitmann: Modes and Almost Periodic Integrals for Cocycles. In: Differential Equations, 47, 13, 1837 - 1852 (2011).
- [14] Ermakov, I. V. and V. Reitmann: Determining functionals for cocycles and application to the microwave heating problem. In: Proc. of the Intern. Conf. Equadiff 2011, Loughborough, UK, (2011).
- [15] Kalinin, Yu. N., Reitmann, V. and N. Y. Yumaguzin: Asymptotic behavior of Maxwell's equation in one-space dimension with thermal effect. Discrete and Cont. Dyn. Sys. -Supplement 2011, 2, 754 – 762 (2011).
- [16] Leonov, G.A. and V. Reitmann: Absolute observation stability for evolutionary variational inequalities. In: World Scientific Publishing Co., Scientific Series on Nonlinear Science, Series B, 14 (2010).
- [17] Reitmann, V.: Observation stability for controlled evolutionary variational inequalities. Preprint Series DFG-SPP 1114, 21, (2003).
- [18] Reitmann, V and N. Y. Yumaguzin: Stability analysis for Maxwell's equation with a thermal effect in one space dimension. In: Proc. of the Sixth Intern. Conf. on Differential and Functional Differential Equations, Moscow, Russia, 2011. (Co-author: Yumaguzin, N.) In: Contemporary Mathematics. Fundamental Directions (to appear 2012).

Proof of Theorem 3.2 Suppose $y_1(\cdot), y_2(\cdot)$ are two arbitrary solutions of (3.3). Then $y := y_1 - y_2$ is a solution of

$$\dot{y} = Ay + B\psi$$
 with $\psi(t) := \phi(\sigma_1(t)) - \phi(\sigma_2(t)),$

 $\sigma_i(t) := Cy_i(t), i = 1, 2.$ By assumption (H3) we have with $\sigma = \sigma_1 - \sigma_2$ the inequality

$$\mu_1 \sigma(t)^2 \le \psi(t) \sigma(t) \le \mu_2 \sigma(t)^2, \ \forall t \ge 0 \ .$$
(8.1)

Because of 1) and 3) Theorem 3.1 is applicable with the Hermitian form $F(y,\xi) = \operatorname{Re}\left[(\mu_2 Cy - \xi)(\xi - \mu_1 Cy)^*\right]$ (Fig. 4). It follows that there exist an $n \times n$ -matrix

 $P=P^*$ and a number $\varepsilon>0$ such that

$$2y^*P[(A+\lambda I)y + B\psi] + (\mu_2 Cy - \psi)(\psi - \mu_1 Cy) \le -\varepsilon [|y|^2 + |\psi|^2]$$

$$\forall y \in \mathbb{R}^n, \ \forall \psi \in \mathbb{R}.$$

(8.2)

For $\psi = 0$ we get from (8.2) the inequality

$$2y^*P(A+\lambda I)y - \mu_1\mu_2(Cy)^2 \le -\varepsilon|y|^2, \ \forall y \in \mathbb{R}^n.$$
(8.3)

Since $\mu_1\mu_2 < 0$ inequality (8.3) implies that

$$y^* P(A + \lambda I)y + y^* (A + \lambda I)^* Py < 0, \ \forall y \in \mathbb{R}^n \quad y \neq 0.$$
(8.4)

From (8.4) it follows by Lyapunov's theorem that the matrix P has exactly 2 negative and (n-2) positive eigenvalues, since $A + \lambda I$ has 2 eigenvalues with positive real part and (n-2) eigenvalues with negative real part.

Putting in (8.2) $y = y_1 - y_2$, $\psi = \phi(Cy_1) - \phi(Cy_2)$ and using the fact that

$$[\mu_2 C(y_1 - y_2) - (\phi(Cy_1) - \phi(Cy_2))] [(\phi(Cy_1) - \phi(Cy_2)) - \mu_1 C(y_1 - y_2)] \ge 0,$$

we derive from (8.2) the inequality

$$\frac{d}{dt}V(y_1(t) - y_2(t)) + 2\lambda V(y_1(t) - y_2(t)) \le -\varepsilon |y_1(t) - y_2(t)|^2, \ \forall t \ge 0.$$

Proof of Theorem 8.3 (See also Smith,1986 $\frac{d}{dt}[e^{2\lambda t}V(y_1-y_2)] \leq -2\varepsilon e^{2\lambda t}|y_1-y_2|^2$, $\forall t \leq \tau$, if $y_1, y_2 \in S$. Integration on $[\Theta, \tau]$ gives

$$e^{2\lambda\tau}V(y_1(\tau) - y_2(\tau)) \le e^{2\lambda\Theta}V(y_1(\Theta) - y_2(\Theta)) - 2\varepsilon \int_{\Theta}^{\tau} e^{2\lambda t} |y_1(t) - y_2(t)|^2 dt$$
(8.5)

Since $e^{\lambda t}|y_1(t)|, e^{\lambda t}|y_2(t)|$ are in $L^2(-\infty, \tau)$ the function $e^{\lambda t}|y_1 - y_2|$ is also in $L^2(-\infty, \tau)$.

It follows that there exists a sequence of times $\Theta_{\nu} \to -\infty$ as $\nu \to \infty$ with

 $|y_1(\Theta_{\nu})-y_2(\Theta_{\nu})|e^{\lambda\Theta_{\nu}}\to 0$. Putting in (8.5) $\Theta=\Theta_{\nu}$ and assuming $\nu\to\infty$ we get

$$e^{2\lambda\tau}V(y_1(\tau) - y_2(\tau)) \le -2\varepsilon \int_{-\infty}^{\tau} e^{2\lambda t} |y_1(t) - y_2(t)|^2 dt \le 0.$$
 (8.6)

Take a regular $n \times n$ -matrix $Q = Q^*$ such that

$$Q^*PQ = \begin{pmatrix} -1 & & \\ & -1 & & 0 \\ & & +1 & \\ 0 & & \ddots & \\ & & & +1 \end{pmatrix} \text{ and put } y = Q\binom{u}{v} \text{ with } u \in \mathbb{R}^2, v \in \mathbb{R}^{n-2}.$$

 $\Pi y := u, \forall y \in \mathbb{R}^n$. Clearly that $|\Pi y|^2 = |u|^2$. Since $Q^{-1}y = {\binom{u}{v}}$ we have $|Q^{-1}y|^2 = |u|^2 + |v|^2$ and $V(y) = y^* Py = (u^*, v^*)Q^*PQ{\binom{u}{v}} = -|u|^2 + |v|^2$. It follows that

$$\begin{split} V(y) + 2|\Pi y|^2 &= -|u|^2 + |v|^2 + 2|u|^2 = |u|^2 + |v|^2 \\ &= |Q^{-1}y|^2 \geq |\Pi y|^2 , \quad \forall y \in \mathbb{R}^n \,. \end{split}$$

Consider two arbitrary amenable solutions y_1, y_2 of (8.6). It follows now that

$$V(y_1(t) - y_2(t)) \le 0, \ \forall t \ge 0, \text{ and}$$

$$2 |\Pi (y_1(\tau) - y_2(\tau))|^2 \ge |Q^{-1}(y_1(\tau) - y_2(\tau))|^2 \ge |\Pi (y_1(\tau) - y_2(\tau))|^2.$$
(8.7)

If h and k are arbitrary constants the amenable solutions $y_1(t-h)$, $y_2(t-k)$ can replace y_1, y_2 in (8.7). Thus, if γ_1, γ_2 are amenable orbits of y_1, y_2 then

$$2 |\Pi p_1 - \Pi p_2|^2 \ge |Q^{-1}(p_1 - p_2)|^2 \ge |\Pi p_1 - \Pi p_2|^2 \qquad \forall p_1, p_2 \in \gamma_1, \gamma_2.$$
(8.8)

It follows now that $\Pi : \mathcal{A} \to \Pi \mathcal{A}$ is a homeomorphism of \mathcal{A} onto $\Pi \mathcal{A}$.