Embedding of compact invariant sets of

dynamical systems on infinite-dimensional

manifolds into finite-dimensional spaces

S. Popov and V. Reitmann*
Saint-Petersburg State University, Russia
Department of Mathematics and Mechanics

9th AIMS Conference on Dynamical Systems,
Differential Equations and Applications
July 1-5, 2012, Orlando, Florida, USA

[^0]
1 Feedback control systems

Suppose

$$
\begin{equation*}
\dot{y}=f(y) \tag{1.1}
\end{equation*}
$$

with a vector function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ ("parent flow") is given.
Then (1.1) can be written as feedback control system

$$
\begin{equation*}
\dot{y}=A y+B \phi(C y(t)), \tag{1.2}
\end{equation*}
$$

where A, B and C are arbitrary $n \times n$ matrices (B and C regular) and $\phi(\sigma)=B^{-1}\left[f\left(C^{-1} \sigma\right)-A C^{-1} \sigma\right], \sigma \in \mathbb{R}^{n}$. Consider the more general system

$$
\begin{equation*}
\dot{y}=A y+B \xi(t), \xi(t)=\phi\left(C y(t), \xi_{0}\right) \tag{1.3}
\end{equation*}
$$

with the $n \times n, n \times m$ and $l \times m$ matrices A, B and C and the nonlinearity ϕ which can be smooth, piecewise smooth or a hysteresis function.

Remark 1.1 (1.3) can also describe an infinite-dimensional system. Suppose $Y_{1} \subset Y_{0} \subset Y_{-1}$ are densely and continuously embedded Hilbert spaces (rigged Hilbert space structure), Ξ and W are also Hilbert spaces,

$$
A: Y_{1} \rightarrow Y_{-1}, \quad B: \Xi \rightarrow Y_{-1}, \quad C: Y_{1} \rightarrow W
$$

are bounded linear operators, $\phi: W \rightarrow \Xi$ is a nonlinearity, and the equation

$$
\begin{equation*}
\dot{y}=A y+B \phi(C y) \tag{1.4}
\end{equation*}
$$

is the state space realization model for well-posed input-output (measurement) maps.

- ODE case: $Y_{1}=Y_{0}=Y_{-1}=\mathbb{R}^{n}, W=\mathbb{R}^{s}, \quad \Xi=\mathbb{R}^{r}$
- PDE (Boundary control system)
$Y_{0}=L^{2}(0,1), Y_{1}=W^{1,2}(0,1), Y_{-1}=Y^{*}, A: Y_{1} \rightarrow Y_{-1}$,
$(A u, v)_{1,-1}=\int_{0}^{1}(A u)(x) v(x) d x=-\int_{0}^{1}\left(a u_{x} v_{x}+b u v\right) d x$,
$\forall u, v \in W^{1,2}(0,1)$
$\Xi=\mathbb{R}, B: \Xi \rightarrow Y_{-1}, B=a \delta(x-1), g: \mathbb{R} \rightarrow \mathbb{R}, a>0, b>0$ numbers

$$
\left.\begin{array}{l}
\frac{\partial u}{\partial t}=a u_{x x}-b u, 0<x<1 \\
u_{x}(0, t)=0, u_{x}(1, t)=g(w(t)), u(\cdot, 0)=u_{0} \tag{1.5}\\
g(w(t))=C u(x, t)=\int_{0}^{1} c(x) u(x, t) d x, c \in L^{2}(0,1)
\end{array}\right\}
$$

- Evolutionary variational inequalities

Suppose $Y_{1} \subset Y_{0} \subset Y_{-1}$ is a real Hilbert space rigging structure with $A \in \mathcal{L}\left(Y_{1}, Y_{-1}\right)$. Assume that Ξ and W are two real Hilbert spaces with scalar products $(\cdot, \cdot)_{\Xi},(\cdot, \cdot)_{W}$ and norms $\|\cdot\|_{\Xi},\|\cdot\|_{W}$, respectively. Introduce the linear continuous operators

$$
B: \Xi \rightarrow Y_{-1}, \quad C: Y_{1} \rightarrow W
$$

and define the set-valued map

$$
\varphi: \mathbb{R}_{+} \times W \rightarrow 2^{\Xi}
$$

and the map

$$
\psi: Y_{1} \rightarrow \mathbb{R}_{+} \cup\{+\infty\}
$$

Consider the evolutionary variational inequality (Duvant, Lions, 1976)

$$
\begin{gather*}
(\dot{y}-A y-B \xi, \eta-y)_{-1,1}+\psi(\eta)-\psi(y) \leq 0, \forall \eta \in Y \tag{1.6}\\
w(t)=C y(t), \xi(t) \in \varphi(t, w(t)), y(0)=y_{0} \in Y_{0} \tag{1.7}
\end{gather*}
$$

Note that in applications φ is a material law nonlinearity, ψ is a contacttype or friction functional and $w(t)=C y(t)$ is the output of the inequality.

In the contact free case when $\psi=0$ the evolutionary variational inequality (1.6-1.7) is equivalent to an evolution equation with a set-valued nonlinearity φ given by

$$
\begin{gather*}
\dot{y}=A y+B \xi \text { in } Y_{-1} \tag{1.8}\\
w(t)=C y(t), \xi(t) \in \varphi(t, w(t)), y(0)=y_{0} \in Y_{0} \tag{1.9}
\end{gather*}
$$

(Likhtarnikov, Yakubovich, 1976; Kantz, Reitmann, 2004)

- Functional differential equations (FDE's or PDE's with delay)

$$
\begin{equation*}
\dot{y}(t)=\sum_{k=0}^{m} A_{k} y\left(t+r_{k}\right)+B \phi\left(C y_{t}\right),-r \leq r_{m}<\cdots<r_{1}<r_{0}=0 \tag{1.10}
\end{equation*}
$$

$y(0)=h \in H, y_{0}=\alpha \in L^{2}([-r, 0] ; H), H$ Hilbert space
$y_{t}(\cdot):[-r, 0] \rightarrow H, y_{t}(\Theta)=y(t+\Theta)$ a.a. $\Theta \in[-r, 0]$
$A_{i}: \mathcal{D}\left(A_{i}\right) \subset H \rightarrow H, i=0,1, \ldots, m, Y_{0}=L^{2}([-r, 0] ; H) \times H$,
$B \in \mathcal{L}(U, H), U$ Hilbert space
$F: \mathcal{D}(F) \subset Y_{0} \rightarrow Y_{0}$ given by $F(\{\alpha, h\}):=\left\{\dot{\alpha}, \sum_{k=0}^{m} A_{k} h\left(r_{k}\right)+\right.$ $B \phi(C \alpha)\}$
$\mathcal{D}(F)=\left\{\{\alpha, h\} \in Y_{0} \mid \alpha:[-r, 0] \rightarrow H\right.$ absolutely continuous,
$\left.\dot{\alpha} \in L^{2}([-r, 0] ; H), h=\alpha(0) \in \mathcal{D}(A)\right\} \quad$ ODE in the skew-product Y_{0}

$$
\begin{equation*}
\dot{z}(t)=\bar{A} z(t)+\bar{B} \bar{\phi}(\bar{C} z(t)) \equiv F(z(t)), z(0)=z_{0} \in Y_{0} \tag{1.11}
\end{equation*}
$$

$(\{\alpha, h\},\{\beta, k\})_{0}:=\int_{-r}^{0}(\alpha(\Theta), \beta(\Theta))_{H} d \Theta+(h, k)_{H}$

$$
\text { for }\{\alpha, h\},\{\beta, k\} \in Y_{0}
$$

$H=\mathbb{R}^{n}: \dot{y}=\int_{-r}^{0} \Gamma(s) y(t+s) d s+A_{1} y(t)+A_{2} y(t-r)+b \varphi(\sigma(t))$,
$\sigma(t)=c^{*} y(t)+\int_{-r}^{0} g^{*}(s) y(t+s) d s, \quad y(0)=h, y_{0}=\alpha$,
with b and $c n$-vectors, $g \in L^{2}\left([-r, 0] ; \mathbb{R}^{n}\right)$,
$\Gamma \in L^{2}\left([-r, 0] ; \mathbb{R}^{n \times n}\right), A_{1}$ and $A_{2} n \times n$ matrices,
$\varphi: \mathbb{R} \rightarrow \mathbb{R}$ s.t. the generalized solutions exist

$$
\left.\begin{array}{lrr}
w_{t t}-w_{x x}+\sigma(\theta) w_{t}=0, & 0<x<1, \quad t>0 \\
\theta_{t}-\theta_{x x}=\sigma(\theta) w_{t}^{2}, & 0<x<1, \quad t>0 \\
w(0, t)=f_{1}(t), w(1, t)=f_{2}(t), & 0<x<1, \quad t>0 \\
\theta(0, t)=\theta(1, t)=0, & & t>0 \tag{1.12}\\
w(x, 0)=w_{0}(x), w_{t}(x, 0)=w_{1}(x), & 0<x<1 \\
\theta(x, 0)=\theta_{0}(x) . & 0<x<1
\end{array}\right\}
$$

Suppose $f_{1}(t)=f_{2}(t) \equiv 0$. Then we can write (1.12) formally as the system

$$
\frac{\partial w}{\partial t}=A w+B \xi\left(w_{t}, \theta\right)
$$

with

$$
A=\left(\begin{array}{ccc}
0 & I & 0 \\
-\triangle & 0 & 0 \\
-\triangle & 0 & 0
\end{array}\right), B=\left(\begin{array}{cc}
0 & 0 \\
-I & 0 \\
0 & I
\end{array}\right)
$$

and

$$
\xi(v, \theta)=\binom{\xi_{1}(v, \theta)}{\xi_{2}(v, \theta)}=\binom{\sigma(\theta) v}{\sigma(\theta) v^{2}}
$$

(Manoranjan, Yin, 2002; Kalinin, Reitmann, Yumaguzin, 2011; Popov, 2011)

- Maxwell-Dirac equation

$$
\left.\begin{array}{l}
\left(-i \gamma^{\mu} \partial_{\mu}+m\right) \psi=g v^{\mu} \gamma_{\mu} \psi \tag{1.13}\\
v_{\mu}=\left(\triangle-\partial_{0}^{2}\right) v_{\mu}=g \Psi \gamma_{\mu} \psi \\
\partial^{\mu} v_{\mu}=0
\end{array}\right\}
$$

Here the v^{μ} 's are the components of the electromagnetic vector field, ψ is the Dirac spinor field. The positive definite inner product in spin space is denoted by $\psi^{+} \psi$ and Ψ denotes $\psi^{+} \gamma^{0}$. The γ^{\prime} s are operators in spin space which satisfy $\gamma^{\mu} \gamma^{\nu}+\gamma \nu \gamma \mu=2 g^{\mu \nu}\left(g^{00}=1, g^{11}=-1, g^{\mu \nu}=0, \mu \neq \nu\right)$. Existence of solutions (Chadam, 1973)
Attractor type: solitary waves (Komech, Komech, 2010)

Some solution conceptions for (1.3)

1) Weak solutions in some Sobolev space
2) Classical solutions for differential inclusions
3) Filippov solutions, i.e. absolutely continuous functions $y(\cdot)$ which satisfy (1.3) almost everywhere.
H1) For any initial state (1.3) has exactly one Filippov solution on $[0, \infty)$.

2 The reconstruction principle and the cone condition

Let $\gamma=\{y(t) \mid t \geq 0\}$ be a semi-orbit of (1.3), Π the projection on some plane E (Fig. 2).

Fig. 2
How to choose a projection $\Pi: \mathbb{R}^{3} \rightarrow E \cong \mathbb{R}^{2}$ such that $\Pi: \gamma \rightarrow \Pi \gamma$ is one-to-one and continuous in \mathcal{A} ?

H2) (cone condition) There exist a set $S \subset \mathbb{R}^{n}$ and an $n \times n$-matrix $P=P^{*}$ having 2 negative and $(n-2)$ positive eigenvalues such that for any two solutions $y_{1}(\cdot), y_{2}(\cdot)$ of (1.3) with $y_{i}(t) \in S, \forall t \geq 0, i=1,2$, we
have with $V(y)=y^{*} P y$ the inequality

$$
\begin{equation*}
V\left(y_{1}(t)-y_{2}(t)\right) \leq 0, \quad \forall t \geq 0 \tag{2.1}
\end{equation*}
$$

(Smith, 1986, Foias et al, 1988, Robinson, 1993)

Geometrical interpretation of the cone condition for $\mathbf{n}=\mathbf{3}$

Assume $V(y)=y^{*} P y$ is a quadratic form satisfying (2.1) along the solutions of (1.3), $K:=\{y \mid V(y) \leq 0\}$ is a 2-dimensional cone, $\mathbb{R}^{3} \backslash K$ is a 1-dimensional cone (Fig.3). Let l be the direction of the main axis of $\mathbb{R}^{3} \backslash K$ with $l^{*} P l>0, E$ is the orthogonal to l plane through the origin, Π is the orthogonal projection on E.
Suppose that $y_{1}(\cdot), y_{2}(\cdot)$ are two arbitrary distinct solutions of (1.3) in S, i.e. $y_{1}(t) \neq y_{2}(t) \quad \forall t \geq 0, y_{1}(t), y_{2}(t) \in S, \quad \forall t \geq 0$. From (2.1) we have $V\left(y_{1}(t)-y_{2}(t)\right) \leq 0, \quad \forall t \geq 0$, i.e. $y_{1}(t)-y_{2}(t) \in K, \quad \forall t \geq 0$.
Then

$$
\begin{equation*}
\Pi y_{1}(t) \neq \Pi y_{2}(t), \quad \forall t \geq 0 . \tag{2.2}
\end{equation*}
$$

Assume the opposite, i.e. assume that

$$
\begin{equation*}
\exists t_{0} \geq 0: \Pi y_{1}\left(t_{0}\right)=\Pi y_{2}\left(t_{0}\right) . \tag{2.3}
\end{equation*}
$$

It follows from (2.3) that $\Pi\left[y_{1}\left(t_{0}\right)-y_{2}\left(t_{0}\right)\right]=0$, i.e. the point $y_{1}\left(t_{0}\right)-y_{2}\left(t_{0}\right)$ is projected under Π into 0 . But then there exists a $k \neq 0$ such that $y_{1}\left(t_{0}\right)-y_{2}\left(t_{0}\right)=k l$. Consequently we have $V(k l)=k^{2} l^{*} P l>0$, a contradiction to the fact that $V\left(y_{1}\left(t_{0}\right)-y_{2}\left(t_{0}\right)\right) \leq 0$.

Fig. 3

3 Frequency-domain methods

Suppose A, B and C are matrices of order $n \times n, n \times m$ and $l \times n$, respectively, $F(x, \xi)$ is a Hermitian form on $\mathbb{C}^{n} \times \mathbb{C}^{m}$, i.e. a quadratic form which takes only real values. The pair (A, B) is called stabilizable if there exists an $n \times m$ matrix D such that $A+B D$ is Hurwitzian, i.e. has only eigenvalues with negative real part.

Theorem 3.1 (Frequency theorem; Yakubovich, 1962; Kalman, 1963) Let the pair (A, B) be stabilizable and $\operatorname{det}(i \omega I-A) \neq 0, \forall \omega \in \mathbb{R}$.
a) For the existence of a real symmetric $n \times n$-matrix P satisfying the Riccati inequality

$$
\begin{align*}
& 2 \operatorname{Re} x^{*} P(A x+B \xi)+F(x, \xi)<0, \\
& \quad \forall x \in \mathbb{C}^{n} \quad \forall \xi \in \mathbb{C}^{m},|x|+|\xi| \neq 0 \tag{3.1}
\end{align*}
$$

it is necessary and sufficient that the frequency-domain condition

$$
\begin{align*}
& F\left((i \omega I-A)^{-1} B \xi, \xi\right)<0, \\
& \quad \forall \xi \in \mathbb{C}^{m}, \xi \neq 0 \quad \forall \omega \in \mathbb{R} \tag{3.2}
\end{align*}
$$

is satisfied.
b) A matrix $P=P^{*}$ satisfying (3.1) can be computed in a finite number of steps.

Consider the system

$$
\begin{equation*}
\dot{y}=A y+B \phi(C y(t)), \tag{3.3}
\end{equation*}
$$

where A, B and C are matrices of order $n \times n, n \times 1$ and $1 \times n$, respectively. Introduce the transfer function $\chi(z)=C(z I-A)^{-1} B$ for $z \in \mathbb{C}: \operatorname{det}(z I-A) \neq 0$.
$\phi: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following condition:
(H3) There exist parameters $\mu_{1}<0<\mu_{2}$ such that

$$
\begin{array}{r}
\mu_{1}\left(\sigma_{1}-\sigma_{2}\right)^{2} \leq\left[\phi\left(\sigma_{1}\right)-\phi\left(\sigma_{2}\right)\right]\left(\sigma_{1}-\sigma_{2}\right) \leq \mu_{2}\left(\sigma_{1}-\sigma_{2}\right)^{2} \\
\forall \sigma_{1}, \sigma_{2} \in \mathbb{R} \tag{3.4}
\end{array}
$$

Remark 3.1 If ϕ is C^{1} the condition (3.4) can be written in the following way:
(H3)' There exist parameters $\mu_{1}<0<\mu_{2}$ such that

$$
\begin{equation*}
\mu_{1} \leq \phi^{\prime}(\sigma) \leq \mu_{2}, \quad \forall \sigma \in \mathbb{R} \tag{3.4}
\end{equation*}
$$

Theorem 3.2 Suppose that for ϕ from (3.3) the condition (H3) is satisfied and there exists a $\lambda>0$ such that the following holds:

1) The pair $(A+\lambda I, B)$ is stabilizable ;
2) The matrix $A+\lambda I$ has exactly two eigenvalues with positive real part and $(n-2)$ with negative real part;
3) $\operatorname{Re}\left[1+\mu_{1} \chi(i \omega-\lambda)\right]\left[1+\mu_{2} \chi(i \omega-\lambda)\right]^{*}>0, \forall \omega \in \mathbb{R}$;

Then there exists an $n \times n$-matrix $P=P^{*}$ having 2 negative and $(n-2)$ positive eigenvalues, and a number $\varepsilon>0$ such that with the function $V(y)=y^{*} P y$ the inequality

$$
\begin{equation*}
\frac{d}{d t} V\left(y_{1}(t)-y_{2}(t)\right)+\lambda V\left(y_{1}(t)-y_{2}(t)\right)-\varepsilon\left|y_{1}(t)-y_{2}(t)\right|^{2}, \forall t \geq 0 \tag{3.5}
\end{equation*}
$$

(Squeezing property)
is satisfied for any two solutions $y_{1}(\cdot), y_{2}(\cdot)$ of (3.3).

Geometrical interpretation of the frequency-domain condition

Fig. 4

4 Amenable solutions and essential modes

Definition 4.1 (R. A. Smith, 1987) Suppose $\lambda>0$ is a number. A solution $y(\cdot)$ of (1.3) is called amenable if there exists a number $\tau \in \mathbb{R}$ such that $y(t) \in S, \forall t \leq \tau$, and $\int_{-\infty}^{\tau} e^{2 \lambda t}|y(t)|^{2} d t<+\infty$.

Remark 4.1 If (1.3) has a compact attractor then all solutions inside the attractor are amenable.

Theorem 4.1 Suppose that the conditions of Theorem 3.2 are satisfied with a parameter $\lambda>0$ and $P=P^{*}$ is the $n \times n$ matrix satisfying

$$
\begin{aligned}
2 y^{*} P[(A+\lambda I) y+B \psi]+\left(\mu_{2} C y-\psi\right)\left(\psi-\mu_{1} C y\right) & \leq-\varepsilon\left[|y|^{2}+|\psi|^{2}\right] \\
\forall y & \in \mathbb{R}^{n}, \forall \psi \in \mathbb{R} .
\end{aligned}
$$

and having 2 negative and $(n-2)$ positive eigenvalues.

Choose a matrix $Q=Q^{*}$ of order $n \times n$ such that

$$
Q^{*} P Q=\left(\begin{array}{ccccc}
-1 & & & & \\
& -1 & & & 0 \\
& & +1 & & \\
0 & & & \ddots & \\
& & & & +1
\end{array}\right)
$$

and define the linear map $\Pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{2}$ by $\Pi y:=u$ where $\binom{u}{v}=Q^{-1} y$ with $u \in \mathbb{R}^{2}$,
$v \in \mathbb{R}^{n-2}$. Then if \mathcal{A} is the set of amenable solution of (3.3) the map

$$
\begin{equation*}
\Pi: \mathcal{A} \rightarrow \Pi \mathcal{A} \tag{4.1}
\end{equation*}
$$

is a homeomorphism, i.e. one-to-one and bicontinuous.
Definition 4.2 (O. Ladyzhenskaya, 1987) Suppose that (1.4) has in the (infinite-dimensional) phase-space Y_{0} an attractor \mathcal{A} and a finite-dimensional projector Π with the following property: For any two orbits γ_{1}, γ_{2} of the attractor \mathcal{A} the condition $\Pi \gamma_{1}=\Pi \gamma_{2}$ implies $\gamma_{1}=\gamma_{2}$. Then we say that the number of essential or determining modes of (1.4) for \mathcal{A} is finite.

Corollary 4.1 Suppose that the conditions of Theorem 3.2 are satisfied and (3.3) has a compact attractor \mathcal{A}. Then the number of essential modes for \mathcal{A} is two.

Remark 4.2 In many cases in the system $\dot{y}=A y+B \phi(C y)$ (1.4) we have a symmetric $A=A^{*}: Y_{1} \rightarrow Y_{-1}$. If the embedding $Y_{1} \subset Y_{-1}$ is completely continuous then the operator A has a system of eigenfunctions (modes) $\left\{w_{j}\right\}$ associated to eigenvalues $\left\{\lambda_{j}\right\}$ by $A w_{j}=\lambda_{j} w_{j}, w_{j} \in$ $Y_{1}, \lambda_{i}<\lambda_{i+1}, \lambda_{i} \rightarrow+\infty,\left(w_{j}, w_{k}\right)=\delta_{j}^{k}$ such that $\left\{w_{j}\right\}$ is a basis of Y_{1}, i.e. any element y can be written as $y=\sum y_{j} w_{j}, \sum y_{j}^{2}<\infty$.

Then $\Pi y:=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$ or, more general, $\Pi y=\left(y_{1}, \ldots, y_{i}\right) \in \mathbb{R}^{i}$ is a finite-dimensional projection. Physically this means that the total energy of an orbit is dominated by the energy of the first i modes.

5 Lipschitz manifolds and the extension procedure

Consider (3.3) under the assumptions of Theorem 4.1 and let

$$
\begin{equation*}
h: \Pi \mathcal{A} \rightarrow \mathcal{A} \tag{5.1}
\end{equation*}
$$

be the inverse map of $\Pi: \mathcal{A} \rightarrow \Pi \mathcal{A}$, (4.1), where \mathcal{A} is again the set of amenable solutions.
It follows from

$$
2\left|\Pi p_{1}-\Pi p_{2}\right|^{2} \geq\left|Q^{-1}\left(p_{1}-p_{2}\right)\right|^{2} \geq\left|\Pi p_{1}-\Pi p_{2}\right|^{2} \quad \forall p_{1}, p_{2} \in \gamma_{1}, \gamma_{2}
$$

that

$$
\begin{array}{r}
2\left|u_{1}-u_{2}\right|^{2} \geq\left|Q^{-1}\left(h\left(u_{1}\right)-h\left(u_{2}\right)\right)\right|^{2} \geq\left|u_{1}-u_{2}\right| \\
\forall u_{1}, u_{2} \in \Pi \mathcal{A} \tag{5.2}
\end{array}
$$

If $y(\cdot)$ is an amenable solution of (3.3) then $u(t):=\Pi y(t)$ is the solution of the
2-dimensional reduced or observation $O D E$

$$
\begin{equation*}
\dot{u}=\underbrace{\Pi f(h(u))}_{=: g(u)} \quad(f(y)=A y+B \phi(C y)) . \tag{5.3}
\end{equation*}
$$

The reduced vector field g is defined only on the closed set $\Pi \mathcal{A} \subset E \cong$ \mathbb{R}^{2}, since h is defined only on $\Pi \mathcal{A}$. Can we extend h to a Lipschitz continuous map

$$
\tilde{h}: E \cong \mathbb{R}^{2} \rightarrow \mathbb{R}^{n}\left(Y_{0}\right) ?
$$

Assume for a moment that this is possible. Then it holds:

1) $\tilde{g}:=\Pi(f(\tilde{h}))$ is a Lipschitz vector field on $E \cong \mathbb{R}^{2}$ if f is Lipschitz: $\tilde{g}=\Pi \circ f \circ \tilde{h}$.
It follows that all solutions of (3.2) exist and are unique. The observation ODE (5.2) can be used for the reconstruction of the set \mathcal{A} of (3.3).
2) The set \mathcal{A} of amenable solutions of (3.3) lies in the set

$$
\begin{gather*}
\mathcal{M}:=\left\{y \in \mathbb{R}^{n} \mid y=\tilde{H}(u), u \in \mathbb{R}^{2}\right\} . \\
\left(\mathbb{R}_{0}\right) \tag{5.4}
\end{gather*}
$$

Since \tilde{h} is Lipschitz the set (5.4) is a 2-dimensional (m-dimensional) Lipschitz manifold. If \mathcal{A} is the global attractor the set \mathcal{M} attracts all orbits of (3.3) from $\mathbb{R}^{n}\left(Y_{0}\right)$. In this case \mathcal{M} is called the inertial manifold of (3.3) (Foias et al, 1988, Robinson, 1993).

Theorem 5.1 (Stein's extension theorem Stein, 1970)
Let X be a closed subset of $\mathbb{R}^{m}, H\left(=Y_{0}\right)$ be a Hilbert space, and $h: X \rightarrow$ H be a continuous function.
Then there is a continuous extension $\tilde{h}: \mathbb{R}^{m} \rightarrow H$ and there exists a $K=K(m)$ such that if $|h(x)-h(y)| \leq C|x-y|, \forall x, y \in X$, then $|\tilde{h}(x)-\tilde{h}(y) \leq K C| x-y \mid, \forall x, y \in \mathbb{R}^{m}$.

Corollary 5.1 Under the conditions of Theorem 4.1 the reduced vector field (5.2) can be extended to a Lipschitz vector field in $E \cong \mathbb{R}^{2}$. Any amenable solution y of the infinite-dimensional vector field $\dot{y}=A y+B \phi$ in the phase space Y_{0} can be represented as $y=\tilde{h}(u(t))$, where $u(t)$ is the unique solution of the reduced equation (5.2) with initial state $u(0)=\Pi y(0)$.

6 Constructing a reduced system from measurements

Suppose

$$
\begin{equation*}
\dot{y}=f(y) \tag{6.1}
\end{equation*}
$$

is a given (unknown) dissipative system in \mathbb{R}^{n} with attractor \mathcal{A}.
Step 1: Choice of the linear part
Choose a number $\lambda>0$ and matrices A, B and C of order $n \times n, n \times 1$ and $1 \times n$, respectively, such that $(A+\lambda I, B)$ is stabilizable, and $A+\lambda I$ has $2(m)$ eigenvalues with positive real part and $n-2$ eigenvalues with negative real part.

Step 2: Reconstruction of the class of nonlinearities

Calculate on $[0, T]$ the linear semigroup $S(t)=e^{A t}$ with A from Step 1 . Take an $\varepsilon<0$ (tolerance), a natural number N and observe near the attractor the solutions $y_{i}(\cdot), i=1,2, \ldots, N$, of (6.1) on $[0, T]$. Find for any $i=1,2, \ldots, N$ a solution $\phi_{i} \in L^{\infty}\left(0, T ; \mathbb{R}^{n}\right)$ of the linear inequality

$$
\begin{equation*}
\sup _{t \in[0, T]}\left|C y_{i}(t)-C S(t) y_{i}(0)-\int_{0}^{t} C S(t-s) B \phi_{i}(s) d s\right|<\varepsilon \tag{6.2}
\end{equation*}
$$

It follows that $\phi_{i}(t) \approx \phi\left(C y_{i}(t)\right)$ in the sense of $L^{2}(0, T)$, where $\dot{y}_{i}(t)=A y_{i}+B \phi\left(C y_{i}(t)\right)$ on $[0, T]$.
Determine two constants $-\infty \leq \mu_{1}<\mu_{2} \leq+\infty\left(\mu_{2}<+\infty\right.$ if $\mu_{1}=-\infty$ and $\mu_{1}>-\infty$ if $\left.\mu_{2}=+\infty\right)$ such that

$$
\begin{align*}
& \mu_{1}\left[C\left(y_{i}(t)-y_{j}(t)\right)\right]^{2} \leq\left[\phi_{i}(t)-\phi_{j}(t)\right] C\left[y_{i}(t)-y_{j}(t)\right] \\
\leq & \mu_{2}\left[C\left(y_{i}(t)-y_{j}(t)\right)\right]^{2}, \quad i, j=1, \ldots, N \quad t \in[0, T] . \tag{6.3}
\end{align*}
$$

Step 3: Graphic test of the frequency-domain / gap condition

Compute the frequency-domain characteristic
$\chi(i \omega-\lambda)=C((i \omega-\lambda) I-A)^{-1} B$ and compare with the circle $C\left[\mu_{1}, \mu_{2}\right]$ with $\mu_{1}<\mu_{2}$ from Step 2 (Fig. 5).

Fig. 5

If there is no intersection between $\chi(i \omega-\lambda)$ and $C\left[\mu_{1}, \mu_{2}\right]$ go to Step 4. In other case change A, B, C or m and begin again with Step 1. Step 4: Calculation of a homeomorphism $\Pi: \mathcal{A} \rightarrow \Pi \mathcal{A}$
Find with A, B, C from Step 1 and $\mu_{1}<\mu_{2}$ from Step 3 an $n \times n$ matrix $P=P^{*}$ of the matrix inequality

$$
\begin{array}{r}
2 y^{*} P[(A+A I) y+B \psi]+\left(\mu_{2} C y-\psi\right)\left(\psi-\mu_{1} C y\right)<0 \\
\forall y \in \mathbb{R}^{n}, \forall \psi \in \mathbb{R},|y|+|\psi| \neq 0 \tag{6.4}
\end{array}
$$

Such a solution exists by the frequency theorem and is computable in a finite number of steps. Any solution $P=P^{*}$ of (6.3) has 2 negative and $n-2$ positive eigenvalues. Define a matrix $Q=Q^{*}$ through
$Q^{*} P Q=\left(\begin{array}{ccccc}-1 & & & & \\ & -1 & & & 0 \\ & & +1 & & \\ 0 & & & \ddots & \\ & & & & +1\end{array}\right)$. Then the projection is $\Pi: \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{2}
defined by $\Pi y=u, y \in \mathbb{R}^{n}, u \in \mathbb{R}^{2}, v \in \mathbb{R}^{n-2}$, s.th. $\binom{u}{v}=Q^{-1} y$.
It follows from Theorem 4.1 that of \mathcal{A} is the amenable set of (6.1) then $\Pi: \mathcal{A} \rightarrow \Pi \mathcal{A}$ is a homeomorphism.

Step 5: Determination of a reduced ODE for the full equation

 Let $\Pi: \mathcal{A} \rightarrow \Pi \mathcal{A}$ be the homeomorphism from Step 4. Determine a reduced 2-dimensional ODE $\dot{u}=\underbrace{\Pi f(\tilde{h}(u))}_{\tilde{g}(u)}$ from the observations $\Pi y_{i}(t)$, where $y_{i}(t)$ are arbitrary solutions of (6.1) near the attractor and use constructively the extension theorem of Stein to extend this vector field from the closed set $\Pi \mathcal{A} \subset E \cong \mathbb{R}^{2}$ to a Lipschitz vector field on the whole E.
$7 \quad$ When is a given linear projection a homeomorphism on the attractor?

Suppose

$$
\begin{equation*}
\dot{y}=f(y) \tag{7.1}
\end{equation*}
$$

is on ODE in \mathbb{R}^{n}. \mathcal{A} is the set of amenable solutions and $\Pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is a given linear projection. Under what conditions is $\Pi: \mathcal{A} \rightarrow \Pi \mathcal{A}$ a homeomorphism?
Write (7.1) again in the form

$$
\begin{equation*}
\dot{y}=A y+B \phi(\Pi y) \tag{7.2}
\end{equation*}
$$

where A and B are $n \times n$ and $n \times m$ matrices, and $B \phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is defined by $B \phi(\Pi y):=f(y)-A y$. Assume that $f(0)=0$ and the solutions of (7.1) exist on \mathbb{R}_{+}and are unique. Let $K \subset \mathbb{R}^{n}$ be an invariant and absorving
cone for (7.2) having the property

$$
\begin{equation*}
K \cap\left\{y \in \mathbb{R}^{n} \mid \Pi y=0\right\}=\{0\} \tag{7.3}
\end{equation*}
$$

If (7.3) is satisfied then $\Pi: \mathcal{A} \rightarrow \Pi \mathcal{A}$ is a homeomorphism.
(H3)" There exists a $k \times m$ matrix M such that

$$
0 \leq\left(\Pi\left(y_{1}-y_{2}\right)\right)^{*} M\left[\phi\left(\Pi y_{1}\right)-\phi\left(\Pi y_{2}\right)\right], \quad \forall y_{1}, y_{2} \in \mathbb{R}^{n}
$$

Define the Hermitian form $F_{\mathbb{C}}(y, \xi):=\operatorname{Re}\left(y^{*} \Pi^{*} M \xi\right), y \in \mathbb{C}^{n}, \xi \in \mathbb{C}^{m}$, and the transfer matrix $\chi(i \omega):=(i \omega I-A)^{-1} B$.

Theorem 7.1 Suppose that (H3)" is satisfied and there exists a $\delta>0$ such that the following holds:

1) The pair $(A+\lambda I, B)$ is stabilizable ;
2) The matrix $A+\lambda I$ has k eigenvalues with positive real part and $n-k$ with negative real part ;
3) $\operatorname{Re} F_{\mathbb{C}}(\chi(i \omega-\lambda) \xi, \xi)<0, \quad \forall \xi \in \mathbb{C}^{m}, \xi \neq 0, \forall \omega \in \mathbb{R} ;$
4) $\xi^{*} B^{*} \Pi^{*} M \xi \geq 0, \quad \forall \xi \in \mathbb{R}^{m}$.

Then there exists a symmetric $n \times n$ matrix P having k negative and $n-k$ positive eigenvalues such that the following holds:
a) The k-dimensional cone $K:=\left\{y \in \mathbb{R}^{n} \mid y^{*} P y \leq 0\right\}$ is positively invariant for all solutions of (7.1) ;
b) $K \cap\left\{y \in \mathbb{R}^{n} \mid \Pi y=0\right\}=\{0\}$;
c) K absorbs \mathcal{A} and, consequently, $\Pi: \mathcal{A} \rightarrow \Pi \mathcal{A} \subset \mathbb{R}^{k}$ is a homeomorphism.
(Kantz, Reitmann, 2004)

8 Dynamical systems on Banach manifolds

Let \mathcal{M} be an infinite-dimensional Banach manifold and $F: \mathcal{M} \rightarrow T \mathcal{M}$ be an smooth vector field on \mathcal{M}.
Let us consider the equation

$$
\dot{u}=F(u)
$$

and the dynamical system on $\mathcal{M}:\left(\left\{\varphi^{t}\right\}_{t \in \mathbb{R}}, \mathcal{M}\right), \varphi^{t}\left(u_{0}\right) \equiv u\left(t, u_{0}\right)$, $u\left(0, u_{0}\right)=u_{0}$.
Let $u_{0} \in \mathcal{M}$ be a given point and $\left\{\varphi^{t}\left(u_{0}\right)\right\}_{t \geq 0}$ be the associated trajectory A map $h: \mathcal{M} \rightarrow \mathbb{R}$ is called observation function
Let T be the interval between the measurements. Then we get the sequence $z_{0}=h\left(u_{0}\right), z_{1}=h\left(\varphi^{T}\left(u_{0}\right)\right), \ldots, z_{i}=h\left(\varphi^{i T}\left(u_{0}\right), \ldots\right.$
An embedding function is a map

$$
\Phi_{\varphi, h}(u):=\left(h(u), h\left(\varphi^{T}(u)\right), \ldots, h\left(\varphi^{(k-1) T}(u)\right)\right), u \in \mathcal{M}
$$

(Takens, 1981)
Theorem 8.1 [Takens, 1981] Let \mathcal{M} be a compact manifold of dimension n. Let $k \in \mathbb{N}$, such that $k \geq 2 n+1$. Then the set (φ, h) of pairs for which the embedding function $\Phi_{\varphi, h}$ is a topological embedding is open and dense in the space Diff $(\mathcal{M}) \times \mathrm{C}^{r}(\mathcal{M}, \mathbb{R})$ for $r \geq 1$.

Theorem 8.2 [Robinson, 2005] Let H be a Hilbert space and \mathcal{A} be a compact set whose fractal dimension satisfies $\operatorname{dim}_{f}(\mathcal{A})<d, d \in \mathbb{N}$, and which has thickness τ. Choose $k>(2+\tau)$ d, and suppose further that \mathcal{A} is an invariant set for a Lipschitz $\operatorname{map} \varphi: H \rightarrow H$, such that

- the set Γ of points in \mathcal{A} such that $\varphi(x)=x$ satisfies $\operatorname{dim}_{f}(\Gamma)<1 / 2$, and
- \mathcal{A} contains no periodic orbits of φ of period $2, \ldots, k$.

Then a prevalent set of Lipschitz maps $h: H \rightarrow \mathbb{R}$ make the embedding $\Phi_{\varphi, h}: H \rightarrow \mathbb{R}^{k}$ one-to-one on \mathcal{A}.

Theorem 8.3 [Okon, 2002] Let \mathcal{M} be a C^{∞} - manifold with one chart $x: \mathcal{M} \rightarrow U$ where $U \subset H$ is bounded and convex, H is a Banach space. Let ρ_{x} be the metric which is induced by the chart x and let $K \subset \mathcal{M}$ be a compact with $\operatorname{dim}_{f}(K) \leq d, N>2 d$, and $\alpha<(N-2 d) /(N(1+d))$ Then the set of all $\psi \in C_{b}^{k}\left(\mathcal{M}, \mathbb{R}^{N}\right)$ such that

$$
\exists C>0 \quad \forall v, w \in K: C|\psi(v)-\psi(w)|^{\alpha} \leq \rho_{x}(v, w)
$$

is prevalent in $C_{b}^{k}\left(\mathcal{M}, \mathbb{R}^{N}\right)$.

Let $\operatorname{dim}_{\text {cor }}(X)=\lim _{\varepsilon \rightarrow 0} \frac{\ln C(\varepsilon)}{\ln \varepsilon}$ be the correlation dimension. Here $C(\varepsilon)$ is the correlation integral

$$
C(\varepsilon)=\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \sum_{i, j=1}^{N} \Theta\left(\varepsilon-\left\|x_{i}-x_{j}\right\|\right)
$$

where x_{i} are vectors from X and $\Theta(x)$ is the Heaviside function:

$$
\Theta(x)=\left\{\begin{array}{l}
1, x \geq 0 \\
0, x<0
\end{array}\right.
$$

Fig. 6 The estimation of the correlation dimension for the Microwave heating process (1.12)

Fig. 7 Solution of Maxwell-Dirac equation (Das, 1993) A_{u}

Fig. 8 Solution of Maxwell-Dirac equation (1.13) A_{v}

Fig. 9 Solution of Maxwell-Dirac equation
(1.13) $\operatorname{Re}\left(\psi_{1}\right)$

Fig. 10 Solution of Maxwell-Dirac equation (1.13) $\operatorname{Im}\left(\psi_{1}\right)$

Fig. 11 The estimation of the correlation dimension for the Maxwell-Dirac equation (1.13)

References

[1] Boichenko, V. A., Leonov, G. A., and V. Reitmann, Dimension Theory for Ordinary Differential Equations. Teubner, Stuttgart - Leipzig (2004).
[2] Foias, C., Sell, G.R. and R. Temam, Inertial manifolds for nonlinear evolution equations. J. Diff. Eq. 73, 309 - 353 (1988).
[3] Kantz, H. and V. Reitmann, Determining functionals for bifurcations on a finite time-interval in variational inequalities. Proc. Equadiff 2003, Hasselt, (Submitted).
[4] Kantz, H. and V. Reitmann, Frequency domain conditions for the existence of almost periodic solutions in evolutionary variational inequalities. Stochastics \& Dynamics (Submitted).
[5] Ladyzhenskaya, O. A., On estimates of the fractal dimension and the number of determining modes for invariant sets of dynamical systems. Zapiskii nauchnich seminarov LOMI. 163, 105 - 129 (1987).
[6] Likhtarnikov, A. L. and V. A. Yakubovich, The frequency theorem for equations of evolutionary type. Siberian Math. J. 17 5, 790 - 803 (1976).
[7] Robinson, J. C., Inertial manifolds and the cone condition. Dyn. Syst. Appl. 2 3, 311 - 330 (1993).
[8] Salomon, D., Realization theory in Hilbert space. Math. Systems Theory 21, 147 - 164 (1989).
[9] Sauer, T., Yorke, J. A. and M. Casdagli, Embedology. J. Stat. Phys. 65, 579 - 616 (1991).
[10] Smith, R. A., Orbital stability of ordinary differential equations. J. Differential Equations 69, 265 - 287 (1986).
[11] Stein, E. M., Singular integrals and differentialibility properties of functions. Princeton University Press, Princeton, New Jersey (1970).
[12] Webb, G. F., Functional differential equations and nonlinear semigroups in L^{P}-spaces. J. Differential Equations 20, 71 89 (1996).
[13] Ermakov, I. V., Kalinin, Yu. N. and V. Reitmann: Modes and Almost Periodic Integrals for Cocycles. In: Differential Equations,47, 13, 1837 -- 1852 (2011).
[14] Ermakov, I. V. and V. Reitmann: Determining functionals for cocycles and application to the microwave heating problem. In: Proc. of the Intern. Conf. Equadiff 2011, Loughborough, UK, (2011).
[15] Kalinin, Yu. N., Reitmann, V. and N. Y. Yumaguzin: Asymptotic behavior of Maxwell's equation in one-space dimension with thermal effect. Discrete and Cont. Dyn. Sys. Supplement 2011, 2, $754-762$ (2011).
[16] Leonov, G .A. and V. Reitmann: Absolute observation stability for evolutionary variational inequalities. In: World Scientific Publishing Co., Scientific Series on Nonlinear Science, Series B, 14 (2010).
[17] Reitmann, V.: Observation stability for controlled evolutionary variational inequalities. Preprint Series DFG-SPP 1114, 21, (2003).
[18] Reitmann, V and N. Y. Yumaguzin: Stability analysis for Maxwell's equation with a thermal effect in one space dimension. In: Proc. of the Sixth Intern. Conf. on Differential and Functional Differential Equations, Moscow, Russia, 2011. (Co-author: Yumaguzin, N.) In: Contemporary Mathematics. Fundamental Directions (to appear 2012).

Proof of Theorem 3.2 Suppose $y_{1}(\cdot), y_{2}(\cdot)$ are two arbitrary solutions of (3.3). Then $y:=y_{1}-y_{2}$ is a solution of

$$
\dot{y}=A y+B \psi \text { with } \psi(t):=\phi\left(\sigma_{1}(t)\right)-\phi\left(\sigma_{2}(t)\right),
$$

$\sigma_{i}(t):=C y_{i}(t), i=1,2$.
By assumption (H3) we have with $\sigma=\sigma_{1}-\sigma_{2}$ the inequality

$$
\begin{equation*}
\mu_{1} \sigma(t)^{2} \leq \psi(t) \sigma(t) \leq \mu_{2} \sigma(t)^{2}, \forall t \geq 0 \tag{8.1}
\end{equation*}
$$

Because of 1) and 3) Theorem 3.1 is applicable with the Hermitian form $F(y, \xi)=\operatorname{Re}\left[\left(\mu_{2} C y-\xi\right)\left(\xi-\mu_{1} C y\right)^{*}\right]$ (Fig. 4). It follows that there exist an $n \times n$-matrix
$P=P^{*}$ and a number $\varepsilon>0$ such that

$$
\begin{align*}
2 y^{*} P[(A+\lambda I) y+B \psi]+\left(\mu_{2} C y-\psi\right)\left(\psi-\mu_{1} C y\right) \leq & -\varepsilon\left[|y|^{2}+|\psi|^{2}\right] \\
\forall y & \in \mathbb{R}^{n}, \forall \psi \in \mathbb{R} . \tag{8.2}
\end{align*}
$$

For $\psi=0$ we get from (8.2) the inequality

$$
\begin{equation*}
2 y^{*} P(A+\lambda I) y-\mu_{1} \mu_{2}(C y)^{2} \leq-\varepsilon|y|^{2}, \forall y \in \mathbb{R}^{n} . \tag{8.3}
\end{equation*}
$$

Since $\mu_{1} \mu_{2}<0$ inequality (8.3) implies that

$$
\begin{equation*}
y^{*} P(A+\lambda I) y+y^{*}(A+\lambda I)^{*} P y<0, \forall y \in \mathbb{R}^{n} \quad y \neq 0 . \tag{8.4}
\end{equation*}
$$

From (8.4) it follows by Lyapunov's theorem that the matrix P has exactly 2 negative and ($n-2$) positive eigenvalues, since $A+\lambda I$ has 2 eigenvalues with positive real part and $(n-2)$ eigenvalues with negative real part.
Putting in (8.2) $y=y_{1}-y_{2}, \psi=\phi\left(C y_{1}\right)-\phi\left(C y_{2}\right)$ and using the fact that
$\left[\mu_{2} C\left(y_{1}-y_{2}\right)-\left(\phi\left(C y_{1}\right)-\phi\left(C y_{2}\right)\right)\right]\left[\left(\phi\left(C y_{1}\right)-\phi\left(C y_{2}\right)\right)-\mu_{1} C\left(y_{1}-y_{2}\right)\right] \geq 0$, we derive from (8.2) the inequality
$\frac{d}{d t} V\left(y_{1}(t)-y_{2}(t)\right)+2 \lambda V\left(y_{1}(t)-y_{2}(t)\right) \leq-\varepsilon\left|y_{1}(t)-y_{2}(t)\right|^{2}, \quad \forall t \geq 0$.

Proof of Theorem 8.3 (See also Smith, $\left.1986 \frac{d}{d t}\left[e^{2 \lambda t} V\left(y_{1}-y_{2}\right)\right] \leq-2 \varepsilon e^{2 \lambda t} \right\rvert\, y_{1}-$ $\left.y_{2}\right|^{2}, \forall t \leq \tau$, if $y_{1}, y_{2} \in S$. Integration on $[\Theta, \tau]$ gives $e^{2 \lambda \tau} V\left(y_{1}(\tau)-y_{2}(\tau)\right) \leq e^{2 \lambda \Theta} V\left(y_{1}(\Theta)-y_{2}(\Theta)\right)-2 \varepsilon \int_{\Theta}^{\tau} e^{2 \lambda t}\left|y_{1}(t)-y_{2}(t)\right|^{2} d t$.

Since $e^{\lambda t}\left|y_{1}(t)\right|, e^{\lambda t}\left|y_{2}(t)\right|$ are in $L^{2}(-\infty, \tau)$ the function $e^{\lambda t}\left|y_{1}-y_{2}\right|$ is also in $L^{2}(-\infty, \tau)$.
It follows that there exists a sequence of times $\Theta_{\nu} \rightarrow-\infty$ as $\nu \rightarrow \infty$ with
$\left|y_{1}\left(\Theta_{\nu}\right)-y_{2}\left(\Theta_{\nu}\right)\right| e^{\lambda \Theta_{\nu}} \rightarrow 0$. Putting in (8.5) $\Theta=\Theta_{\nu}$ and assuming $\nu \rightarrow \infty$ we get

$$
\begin{equation*}
e^{2 \lambda \tau} V\left(y_{1}(\tau)-y_{2}(\tau)\right) \leq-2 \varepsilon \int_{-\infty}^{\tau} e^{2 \lambda t}\left|y_{1}(t)-y_{2}(t)\right|^{2} d t \leq 0 . \tag{8.6}
\end{equation*}
$$

Take a regular $n \times n$-matrix $Q=Q^{*}$ such that
$Q^{*} P Q=\left(\begin{array}{ccccc}-1 & & & & \\ & -1 & & & 0 \\ & & +1 & & \\ 0 & & & \ddots & \\ & & & & +1\end{array}\right)$ and put $y=Q\binom{u}{v}$ with $u \in \mathbb{R}^{2}, v \in$ \mathbb{R}^{n-2},
$\Pi y:=u, \forall y \in \mathbb{R}^{n}$. Clearly that $|\Pi y|^{2}=|u|^{2}$. Since $Q^{-1} y=\binom{u}{v}$ we have $\left|Q^{-1} y\right|^{2}=|u|^{2}+|v|^{2}$ and $V(y)=y^{*} P y=\left(u^{*}, v^{*}\right) Q^{*} P Q\binom{u}{v}=-|u|^{2}+|v|^{2}$. It follows that

$$
\begin{aligned}
V(y)+2|\Pi y|^{2} & =-|u|^{2}+|v|^{2}+2|u|^{2}=|u|^{2}+|v|^{2} \\
& =\left|Q^{-1} y\right|^{2} \geq|\Pi y|^{2}, \quad \forall y \in \mathbb{R}^{n} .
\end{aligned}
$$

Consider two arbitrary amenable solutions y_{1}, y_{2} of (8.6). It follows now that
$V\left(y_{1}(t)-y_{2}(t)\right) \leq 0, \forall t \geq 0$, and

$$
\begin{equation*}
2\left|\Pi\left(y_{1}(\tau)-y_{2}(\tau)\right)\right|^{2} \geq\left|Q^{-1}\left(y_{1}(\tau)-y_{2}(\tau)\right)\right|^{2} \geq\left|\Pi\left(y_{1}(\tau)-y_{2}(\tau)\right)\right|^{2} . \tag{8.7}
\end{equation*}
$$

If h and k are arbitrary constants the amenable solutions $y_{1}(t-h), y_{2}(t-$ $k)$ can replace y_{1}, y_{2} in (8.7). Thus, if γ_{1}, γ_{2} are amenable orbits of y_{1}, y_{2} then
$2\left|\Pi p_{1}-\Pi p_{2}\right|^{2} \geq\left|Q^{-1}\left(p_{1}-p_{2}\right)\right|^{2} \geq\left|\Pi p_{1}-\Pi p_{2}\right|^{2} \quad \forall p_{1}, p_{2} \in \gamma_{1}, \gamma_{2}$.
It follows now that $\Pi: \mathcal{A} \rightarrow \Pi \mathcal{A}$ is a homeomorphism of \mathcal{A} onto $\Pi \mathcal{A}$.

[^0]: * Supported by DAAD and the German-Russian Interdisciplinary Science Center (G-RISC)

