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1. Introduction

Let (Q, d) be a metric space called the base space.
The pair ({τ t}t∈R

, (Q, d)) where τ t : Q → Q for each
t ∈ R is called the base flow if

τ0 = idQ,

τ t ◦ τ s = τ t+s ∀t, s ∈ R.
(1)

Let (M,ρ) be an other metric space (phase space).

Definition 1 The pair ({ϕt(q, ·)}t∈R+,q∈Q , (M,ρ))

where ϕt(q, ·) : M → M for each t ∈ R+, q ∈ Q is called
a cocycle over the base flow ({τ t}t∈R

, (Q, d)) if

ϕ0(q, ·) = idM ∀q ∈ Q,

ϕt+s(q, ·) = ϕt(τ s(q), ϕs(q, ·)) ∀q ∈ Q, ∀t, s ∈ R+.

(2)

For brevity the cocycle ({ϕt(q, ·)}t∈R+,q∈Q , (M,ρ)) over

the base flow ({τ t}t∈R
, (Q, d)) will be denoted by (ϕ, τ).

Define the space M̃ = Q×M with the metric

ρ̃((q1, u1), (q2, u2)) = max {d(q1, q2), ρ(u1, u2)} ,
(qi, ui) ∈ Q×M, i = 1,2

and the family of mappings St : M̃ → M̃ , t ∈ R+,
St(q, u) = (τ t(q), ϕt(q, u)).

The dynamical system ({St}t∈R+
, (M̃, ρ̃)) is called skew

product flow.



A non-autonomous set Ĉ = {C(q)}q∈Q is a mapping

Q → 2M . A nonautonomous set is called bounded
(closed, compact) if for any q ∈ Q the set C(q) is
bounded (closed, compact) in M .

A bounded non-autonomous set Ĉ is said to be a glob-
ally B-pullback absorbing set for (ϕ, τ) if for any q ∈ Q
and any bounded set B ⊂ M there exists a T = T(q,B)
such that ϕt(τ−t(q,B)) ⊂ C(q) for t ≥ T.

A non-autonomous set Ĉ is called globally B-pullback
attracting for (ϕ, τ) if for any q ∈ Q and any bounded
set B ⊂ M

lim
t→+∞

dist(ϕt(τ−t(q),B), C(q)) = 0,

where dist is the Hausdorff semidistance in (M,ρ).

A non-autonomous set Ĉ is called invariant (positively
invariant) for (ϕ, τ) if for any q ∈ Q and t ≥ 0 the
equality ϕt(q, C(q)) = C(τ t(q)) (inclusion ϕt(q, C(q)) ⊂
C(τ t(q))) holds.

Definition 2 A non-autonomous set is called a global
B-pullback attractor for the cocycle (ϕ, τ) if it is com-
pact, invariant and is globally B-pullback attracting.

For the existence proof of a B-pullback attractor we
will use the following theorem [Kloeden-Schmalfuss,
1987]:

Theorem 1 Let the cocycle (ϕ, τ) have a compact
globally B-pullback absorbing set Ĉ = {C(q)}q∈Q.



Then (ϕ, τ) has a unique B-pullback attractor Â =
{A(q)}q∈Q, where for each q ∈ Q

A(q) = ∩t∈R+
∪s≥t,s∈R+

ϕs(τ−s(q), C(τ−s(q)).

2. Existence of a B-pullback attractor for the
1-dimensional microwave heating problem

To describe the microwave heating process we will
consider for any T <∞ a coupled system of Maxwell’s
and heat transfer equations:





εEt + σE = rotH, (x, t) ∈ Ω × (0, T),
µHt + rotE = 0, (x, t) ∈ Ω × (0, T),
b(θ)t − ∆θ = σ|E|2, (x, t) ∈ Ω × (0, T),

where E(x, t) is the electric field, H(x, t) is the mag-
netic field, θ(x, t) is the temperature, σ(x, θ) is the
electrical conductivity, ε(x, t) is the electric permittiv-
ity, µ(x, t) is the magnetic permeability, and

b(s) =





b1(s), s < θ̂[
b1(θ̂), b2(θ̂)

]
, s = θ̂

b2(s), s > θ̂,

is some piecewise smooth function with differentiable,
monotone increasing functions b1(s), b2(s), such that
b1(θ̂) ≤ b2(θ̂).

The derivation of the 1-dimensional microwave heat-
ing problem is given in [H.-M. Yin et al., 2006]:







ψt = ζ, x ∈ (0,1), t > 0,
ζt = ψxx − σ(θ)ζ, x ∈ (0,1), t > 0,
b(θ)t = θxx + σ(θ)ζ2, x ∈ (0,1), t > 0,
ψ(0, t) = 0, ψ(1, t) = 0, t > 0,
θ(0, t) = θ(1, t) = 0, t > 0,
ψ(x,0) = ψ0(x), x ∈ (0,1),
ζ(x,0) = ζ0(x), x ∈ (0,1),
θ(x,0) = θ0(x), x ∈ (0,1).

Our goal is to show specific asymptotic behaviour of
solution’s components, such as asymptotic stability.

Consider the initial-boundary problem

wtt − wxx + σ (θ)wt = 0, 0 < x < 1, t > 0
θt − θxx = σ (θ)w2

t , 0 < x < 1, t > 0
(3)

w (0, t) = f1(t), w (1, t) = f2(t), t > 0
θ (0, t) = θ (1, t) = 0, t > 0

(4)

w (x,0) = w0 (x) , wt (x,0) = w1 (x) , 0 < x < 1
θ (x,0) = θ0 (x) , 0 < x < 1

(5)

where θ(x, t) is the temperature, w(x, t) is the time
integral of the nonzero component of the electric field,
σ(θ) is the electric conductivity, f1(t), f2(t) are the
external perturbations of the electric field.



Assumptions:

(A1.1) σ is locally Lipschitz on (0,+∞);

(A1.2) There exist constants 0 < σ0 ≤ σ1 such that
σ0 ≤ σ(z) ≤ σ1 for any z > 0;

(A1.3) σ is monotone decreasing.

(A2) w0 ∈ L2(0,1), w1 ∈ L2(0,1), θ0 ∈ L2(0,1), θ0 ≥ 0
a.e. on (0,1).

(A3) f1, f2 are C2(R) and there exists a constant c such
that the functions |f ′1| , |f ′2| , |f ′′1 | , |f ′′2 | are bounded
on R by c.

Modification of the existence theorem for weak
solutions from [H.-M. Yin et al., 2006] for the 1-
dimensional case:

Theorem 2 For any T > 0 there exists a global weak
solution (w(x, t), θ(x, t)) of the problem (3)-(5) such
that w ∈ C([0, T ];L2(0,1)), θ ∈ L2(0, T ;H1(0,1)) ∩
C([0, T ];L2(0,1)).

Additional assumption:

(A4) The weak solution is unique.



Denote f(x, t) = f1(t)(1 − x) + f2(t)x and
ψ(x, t) = w(x, t)−f(x, t) and introduce the system with
homogeneous boundary conditions, i.e.

ψt = ζ − ft,
ζt = ψxx − σ(θ)ζ,
θt = θxx + σ(θ)(ψt + ft)2, 0 < x < 1, t > 0

(6)

with initial and boundary conditions

ψ(0, t) = ψ(1, t) = 0, θ (0, t) = θ (1, t) = 0, t > 0
(7)

ψ(x,0) = ψ0(x) = w0(x) − f(x,0), 0 < x < 1
ζ(x,0) = ζ0(x) = w1(x) − ft(x,0), 0 < x < 1
θ (x,0) = θ0 (x) , 0 < x < 1.

(8)

Transformed assumption (A2):

(A2’) ψ0 ∈ H1
0(0,1), ζ0 ∈ L2(0,1), θ0 ∈ L2(0,1), θ0 ≥ 0

a.e. on (0,1).

Introduction of the cocycle corresponding to the
problem (6)-(8)

Define the metric space

M = H1
0(0,1) × L2(0,1) × (L2(0,1) ∩ {θ : θ ≥ 0}) with

the norm

‖(ψ, ζ, θ)‖2
M = ‖ψx‖2

L2(0,1) + ‖ζ‖2
L2(0,1) + ‖θ‖2

L1(0,1).

In our situation: Q = R, τ t(s) = t+ s, ∀t, s ∈ R

ϕt(s, u0) = u(t+ s, s, u0),



where u(t, s, u0) = (ψ(·, t), ζ(·, t), θ(·, t)) is the solution
of (6)-(8) such that u(s, s, u0) = u0 = (ψ0, ζ0, θ0).

From existence and uniqueness of the solution we con-
clude (I. Ermakov, Y. Kalinin, V. Reitmann, 2011):

Theorem 3 The system (6)-(8) generates a cocy-
cle ({ϕt(s, ·)}t∈R+,s∈R

, (M, ‖·‖M)) over the base flow

({τ t}t∈R
,R).

Proof of the existence of an absorbing set:

• Lyapunov function for the 1st subsystem
(damped wave equation);

• monotonicity methods for the 2nd subsystem
(heat equation).

Damped wave equation. Consider the initial-
boundary problem for the wave equation separately:

ψtt−ψxx+σ(x, t)ψt = ftt−σ(x, t)ft, 0 < x < 1, t > s
(9)

ψ(0, t) = ψ(1, t) = 0, t > s (10)

ψ(x, s) = ψ0, ψt(x, s) = ψ1, 0 < x < 1 (11)

where s ∈ R. Here σ(x, t) is a certain function.

Modified assumptions (A1)-(A3):

(A1.2*) There exist constants 0 < σ0 ≤ σ1 such that
σ0 ≤ σ(x, t) ≤ σ1 for all x ∈ (0,1), t ≥ 0.



(A2*) ψ0 ∈ H1
0(0,1), ψ1 ∈ L2(0,1).

(A3*) The function f(x, t) is C1 in x, C2 in t and there
exists a constant c > 0 such that |ft| < c, |fxt| < c,
|ftt| < c for any x ∈ (0,1), t ∈ R.

Under the assumptions (A1.2*) - (A3*) the problem
(9 - 11) has a unique solution (ψ(·, t), ψt(·, t)) ∈M1 =
H1

0(0,1) × L2(0,1) [R. Temam, 1993].
For (ψ, ζ) ∈M1 define

‖(ψ, ζ)‖2
M1

= ‖ψx‖2
L2(0,1) + ‖ζ‖2

L2(0,1)

Write equation (9) as first order system

ψt = ζ − ft,
ζt = ψxx − σ(x, t)ζ

(12)

with boundary and initial conditions

ψ(0, t) = ψ(1, t) = 0, t > s (13)

ψ(x, s) = ψ0(x), ζ(x, s) = ζ0(x), 0 < x < 1 (14)

Proposition 1 For any t > 0 there exist T > 0, c > 0
such that ‖(ψ(·, t; s), ζ(·, t; s))‖M1

< c for any s ≤ t− T .

Idea of the proof: Lyapunov functional on M1

V (ψ, ζ) = ‖ψx‖2 + 2λ(ψ, ζ) + ‖ζ‖2

where λ > 0 is a parameter. ‖·‖ and (·, ·) are in
L2(0,1).

Denote V (t) = V (ψ(·, t), ζ(·, t)).



We prove that there exist δ > 0, c1 > 0 and c2 ∈ R

such that
d

dt
V (t) ≤ −δV (t) + c1,

V (t) ≤ e−δ(t−s)V (s) + c2,

for any t, s, t ≥ s.

The nonlinear heat equation (2nd equation of (6))

General setting (A.A.Pankov, 1983):

Suppose that E ⊂ H ⊂ E′ is a Gelfand triple, i.e.
(E, ‖·‖E) is a reflexive Banach space, H is a Hilbert
space, E′ is the space dual to E, E is continuously
and densely embedded into H.

Suppose that A(t) : E → E′ is a family of operators
and f̃ : R → E′ is a measurable function .
The operator A(t) : E → E′ is monotone, i.e.

(A(t)u−A(t)v, u− v) ≥ 0, ∀u, v ∈ E.

Here (·, ·) is the duality pairing on E × E′, coinsiding
on E × E with the scalar product in H.

Consider the evolution equation

du

dt
+A(t)u = f̃(t). (15)

Suppose that there is an α > 0 such that

(A(t)u− A(t)v, u− v) ≥ α ‖u− v‖2 ∀u, v ∈ E. (16)



Define the following function spaces:

• Cb(R, E) is the set of continuous functions
f : R → E, for which supt∈R ‖f(t)‖E is finite.

• BSp(R, E),1 ≤ p <∞ is the subspace in Lploc(R, E),
consisting of functions with finite norm

‖f‖pSp = sup
t∈R

(∫ t+1

t

‖f(s)‖pE ds
)
.

Consider the heat equation in the form

θt − θxx = σ(θ)g(x, t).

Suppose that g(x, t) ≥ 0 is measurable and uniformly
bounded in t. We have g(x, t) = (ψt(x, t) + ft(x, t))2.
For σ the assumptions (A1.1)-(A1.3) hold.

σ(θ) = σ0 + σ̃(θ), where σ0 is from (A1.2). We get

θt − θxx − σ̃(θ)g(x, t) = σ0g(x, t), 0 < x < 1, t > s
(17)

θ (0, t) = θ (1, t) = 0, t > s (18)

θ (x, s) = θ0 (x) , 0 < x < 1. (19)

The initial-boundary problem (17)-(19) generates an
evolution equation (15), where
A(t)u = −u′′−g(x, t)σ̃(u) for u ∈ E and f̃(t) = σ0g(·, t).

In our situation we have E = H1
0(0,1) and H =

L2(0,1). Check condition (16). Let u, v ∈ H1
0(0,1),

η = u− v. Then

(A(t)u−A(t)v, u−v) = (−η′′, η)+(g(·, t)(σ̃(v)−σ̃(u)), η) =

= (η′, η′) + (g(·, t)(σ̃(v) − σ̃(u)), η) ≥ ‖η‖2 .



A.A. Pankov, 1983:

1. The Cauchy problem for equation (15) has
a unique solution u ∈ BS2(R,H1

0(0,1)) ∩
Cb(R, L

2(0,1)). For the equation (17) this
means that there exists a constant c1 such that
‖θ(·, t; s)‖ ≤ c1 for any t, s ∈ R, s ≤ t.

2. We have the estimate

‖θ1(·, t; s) − θ2(·, t; s)‖ ≤ e−c2(t−s) ‖θ01 − θ02‖ , (20)

for t > s, where θi(x, t; s) is the solution of (17)
with initial data θ0i and initial time s.

The constant c1 does not depend on initial data:

θ(x, t; s) =

∫ 1

0

G(x, y; t, s)θ0(y)dy+

∫ t

s

∫ 1

0

G(x, y; t, r)g(y, r)drdy,

where G(x, y; t, r) is the corresponding Green’s func-
tion which satisfies

|G(x, y; t, s)| ≤ c3√
t− s

.

The influence of initial data tends to zero for t→ ∞.

Make the initial time s tend to −∞, which corresponds
to the time shift in g(x, t).

Proposition 2 Let θ(·, t; s) be the solution of (17)-
(19). There exists a constant c such that for all t and
s ≤ t the inequality ‖θ(·, t; s)‖ ≤ c holds where c does
not depend on θ0.



From uniform boundedness in s of solutions of the
wave equation and the heat equation we obtain

Theorem 4 The cocycle (ϕ, τ) generated by problem
(6) − (8) has a globally B-pullback absorbing set.

Applying the Kloeden-Schmalfuss Theorem, we get

Theorem 5 The cocycle (ϕ, τ) generated by problem
(6) − (8) has a global B-pullback attractor.

3. Determining functionals for cocycles

Physical meaning: Asymptotically finite-dimensional
dynamics
C. Foias, G. Prodi, 1967
O. Ladyzhenskaya, 1975
I.D. Chueshov, 1998
I.D. Chueshov, J. Duan, B. Schmalfuss, 2001.

If the system has a global attractor, such functionals
can give an approximation of the attractor.

Let ({St}t∈R+
, (E, ‖·‖)) be a dynamical system on Ba-

nach space (E, ‖·‖).

Definition 3 The set {lj}Nj=1 of linear continuous

functionals on E is called a set of asymptotically
determining functionals for the dynamical system
({St}t∈R+

, (E, ‖·‖)) if for any u1, u2 ∈ E the condition

lim
t→+∞

∣∣lj(St(u1)) − lj(S
t(u2))

∣∣ = 0, j = 1, ...,N



implies

lim
t→+∞

∥∥St(u1) − St(u2)
∥∥ = 0.

Introduce the determining modes which are important
examples of determining functionals.

Definition 4 The determining modes for the dynam-
ical system ({St}t∈R+

, (H, (·, ·))) on a Hilbert phase

space (H, (·, ·)) are determining functionals lj(·) =

(·, ej) where {ej}N1 are some elements of H.

The notion of pullback-asymptotically determining
functionals for processes was introduced in [J.A.
Langa, 2003]. We give a generalization for cocycles.

Definition 5 The set {lj}Nj=1 of linear continuous

functionals on Banach space (M, ‖·‖) is called a set
of pullback-asymptotically determining functionals for
the cocycle ({ϕt(q, ·)}q∈Q,t∈R+

, (M, ‖·‖)) over the base

flow ({τ t}t∈R
, (Q, d)) if the condition

lim
t→+∞

∣∣lj(ϕt(τ−t(q), u1)) − lj(ϕ
t(τ−t(q), u2))

∣∣ = 0

for any q ∈ Q, u1, u2 ∈ M , j = 1, ..,N implies

lim
t→+∞

∥∥ϕt(τ−t(q), u1) − ϕt(τ−t(q), u2)
∥∥ = 0.

Let (ϕ, τ) be a cocycle on a Hilbert phase space H,
π1 be the projector from H onto a finite-dimensional
subspace of H and π2 be its complement.



Assumptions:

(H1) The non-autonomous set {C(q)}q∈Q is positively

invariant for (ϕ, τ).

(H2) For any q ∈ Q there exists δ = δ(q) ∈ (0,1) such
that for all s ≥ 1, u, v ∈ C(τ−s(q))
∥∥π2(ϕ

1(τ−s(q), u) − ϕ1(τ−s(q), v))
∥∥ ≤ δ(q) ‖u− v‖ .

Let a1, a2 : Q→ H be mappings such that ai(q) ∈ C(q)
for any q ∈ Q.

(H3) For any ε > 0, t ≥ 0 there exists an L = L(ε) ∈ N

such that for any q ∈ Q

δ(q)2L
∥∥ϕt−L(q, a1(q)) − ϕt−L(q, a2(q))

∥∥2
< ε,

and L(ε) → ∞ if ε→ 0.

The next theorem [I. Ermakov, Y. Kalinin, V. Reit-
mann, 2011] is a generalization of Theorem 14 from
[J.A. Langa, 2003]

Theorem 6 Let the assumptions (H1)-(H3) hold and
suppose that there exists a β > 0 such that for any
q ∈ Q

lim
t→+∞

∥∥π1(ϕ
t(τ−t(q), a1(q)) − ϕt(τ−t(q), a2(q)))

∥∥ ≤ β.

Then

lim
t→+∞

∥∥ϕt(τ−t(q), a1(q)) − ϕt(τ−t(q), a2(q))
∥∥ ≤ β. (21)



Corollary 1 Let there exist a β > 0 such that for all
q ∈ Q,u, v ∈ H

lim
t→+∞

∥∥π1(ϕ
t(τ−t(q), u) − ϕt(τ−t(q), v))

∥∥ ≤ β.

Then

lim
t→+∞

∥∥ϕt(τ−t(q), u) − ϕt(τ−t(q), v)
∥∥ ≤ β.

This corollary gives the existence of pullback-
asymptotically determining modes for a cocycle.

Now consider cocycles of a special type. Such cocy-
cles are generated by the microwave heating problem.

Let (ϕ, τ) be a cocycle with phase space
E = E1 ×E2 where E1 is a Hilbert and E2 is a Banach
space, respectively.

ϕ has the form (ϕ1, ϕ2), i.e.

ϕ1 : R+ ×Q× E1 × E2 → E1,

ϕ2 : R+ ×Q× E1 × E2 → E2.

Let π1 be the projector from E1 onto a finite-
dimensional subspace of E1, π2 be its orthogonal com-
plement.

Let a1, a2 : Q→ E be mappings such that ai(q) ∈ C(q)
for any q ∈ Q.

Modify assumptions (H2) and (H3) so that they hold
for ϕ1 instead of ϕ:



(H2*) For any q ∈ Q there exists a δ = δ(q) ∈ (0,1) such
that for all s ≥ 1, u, v ∈ C(τ−s(q)) we have
∥∥π2(ϕ

1
1(τ

−s(q), u) − ϕ1
1(τ

−s(q), v))
∥∥
E1

≤ δ(q) ‖u− v‖E .

(H3*) For any ε > 0, t ≥ 0 there exists an L = L(ε) ∈ N

such that for any q ∈ Q

δ(q)2L
∥∥ϕt−L1 (q, a1(q)) − ϕt−L1 (q, a2(q))

∥∥2

E1
< ε,

and L(ε) → ∞ if ε→ 0.

Theorem 7 Suppose that

1) The assumptions (H1),(H2*),(H3*) hold for the
cocycle (ϕ, τ).

2) The estimate
∥∥ϕt2(τ−t(q), u1, u2) − ϕt2(τ

−t(q), v1, v2)
∥∥
E2

≤ e−ct ‖u2 − v2‖E2

holds with some constant c > 0 for any t > 0, u1, v1 ∈
E1, u2, v2 ∈ E2.

3) There exists a β > 0 such that for any q ∈ Q

lim
t→+∞

∥∥π1(ϕ
t
1(τ

−t(q), a1(q)) − ϕt1(τ
−t(q), a2(q)))

∥∥
E1

≤ β.

Then

lim
t→+∞

∥∥ϕt(τ−t(q), a1(q)) − ϕt(τ−t(q), a2(q))
∥∥
E
≤ β.

(22)



4. Numerical experiments

Consider the family of initial conditions of the form
ψ0(0) = 0, υ0(x) = p sin(πx) and θ0(x) = p sin(πx),
where p is taken from [0,1]. σ(z) = 2 + sin(z).
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Figure 1 Solution component θp(x, t).
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