Frequency-domain conditions for convergence to the stationary set in coupled PDEs

V. Reitmann* and N.Y.Yumaguzin

Saint-Petersburg State University, Russia Department of Mathematics and Mechanics

8th AIMS Conference on Dynamical Systems, Differential Equations and Applications
May 25 - 28, 2010, Dresden, Germany

[^0]
1. Introduction

Suppose: Y_{0} a real Hilbert space, $(\cdot, \cdot)_{0}$ and $\|\cdot\|_{0}$ the scalar product resp. the norm on Y_{0},
$A: \mathcal{D}(A) \rightarrow Y_{0}$ the generator of a C_{0}-semigroup on Y_{0}, $Y_{1}:=\mathcal{D}(A)$.
For fixed $\beta \in \rho(A) \cap \mathbb{R}$ for any $y, \eta \in Y_{1}$ define

$$
\begin{equation*}
(y, \eta)_{1}:=((\beta I-A) y,(\beta I-A) \eta)_{0} . \tag{1}
\end{equation*}
$$

Y_{-1} is the completion of Y_{0} with respect to the norm, $\|y\|_{-1}:=\left\|(\beta I-A)^{-1} y\right\|_{0} \quad$ is the scalar product

$$
\begin{equation*}
(y, \eta)_{-1}:=\left((\beta I-A)^{-1} y,(\beta I-A)^{-1} \eta\right)_{0}, \quad \forall y, \eta \in Y_{-1} \tag{2}
\end{equation*}
$$

$Y_{1} \subset Y_{0} \subset Y_{-1}$ is a continuous embedding, i.e., for $\alpha=1,0$,
$Y_{\alpha} \subset Y_{\alpha-1},\|y\|_{\alpha-1} \leq c\|y\|_{\alpha}, \forall y \in Y_{\alpha}$.
(Y_{1}, Y_{0}, Y_{-1}) is called a Gelfand triple.
For any $y \in Y_{0}$ and $z \in Y_{1}$ we have

$$
\begin{equation*}
\left|(y, z)_{0}\right|=\left|(\beta I-A)^{-1} y,((\beta I-A) z)_{0}\right| \leq\|y\|_{-1}\|z\|_{1} . \tag{3}
\end{equation*}
$$

Extend $(\cdot, z)_{0}$ by continuity onto Y_{-1}

$$
\left|(y, z)_{0}\right| \leq\|y\|_{-1}\|z\|_{1}, \quad \forall y \in Y_{-1}, \forall z \in Y_{1} .
$$

Denote this extension also by $(\cdot, \cdot)_{-1,1}$. Consider the Bochner measurable functions in

$$
L^{2}\left(0, T ; Y_{j}\right) \quad(j=1,0,-1)
$$

$$
\begin{equation*}
\|y(\cdot)\|_{2, j}:=\left(\int_{0}^{T}\|y(t)\|_{j}^{2} d t\right)^{1 / 2} \tag{4}
\end{equation*}
$$

\mathcal{L}_{T} is the space of functions $y \in L^{2}\left(0, T ; Y_{1}\right)$, s.th. $\dot{y} \in L^{2}\left(0, T ; Y_{-1}\right)$. \mathcal{L}_{T} is equipped with the norm

$$
\begin{equation*}
\|y\|_{\mathcal{L}_{T}}:=\left(\|y(\cdot)\|_{2,1}^{2}+\|\dot{y}(\cdot)\|_{2,-1}^{2}\right)^{1 / 2} \tag{5}
\end{equation*}
$$

2. Evolutionary variational systems

Take $T>0$ arbitrary and consider for a.a. $t \in[0, T]$ the evolutionary variational equation

$$
\begin{align*}
& (\dot{y}-A y-B \xi-f(t), \eta-y)_{-1,1}=0, \quad \forall \eta \in Y_{1} \tag{6}\\
& y(0)=y_{0} \in Y_{0}, \\
& w(t)=C y(t), \quad \xi(t)=\varphi(t, w(t)) \tag{7}\\
& \xi(0)=\xi_{0} \\
& z(t)=D y(t)+E \xi(t) \tag{8}
\end{align*}
$$

$C \in \mathcal{L}\left(Y_{-1}, W\right), D \in \mathcal{L}\left(Y_{1}, Z\right)$ and $E \in \mathcal{L}(\equiv, Z)$,
三, W and Z are real Hilbert spaces, $Y_{1} \subset Y_{0} \subset Y_{-1}$ is a real Gelfand triple and $A \in \mathcal{L}\left(Y_{0}, Y_{-1}\right), B \in \mathcal{L}\left(\equiv, Y_{-1}\right)$, $\varphi: \mathbb{R}_{+} \times W \rightarrow \equiv, f: \mathbb{R}_{+} \rightarrow Y_{-1}$.

Denote by $\|\cdot\|_{\equiv,}\|\cdot\|_{W},\|\cdot\|_{Z}$ the norm in $\overline{\text {, }} W$ resp. Z.
Definition 1 Any pair of functions $\{y(\cdot), \xi(\cdot)\}$ with $y \in \mathcal{L}_{T}$ and $\xi \in L_{\text {loc }}^{2}\left(0, \infty ;\right.$) such that $B \xi \in \mathcal{L}_{T}$, satisfying (6), (7) almost everywhere on $(0, T)$, is called solution of the Cauchy problem $y(0)=y_{0}, \xi(0)=\xi_{0}$ defined for (6), (7) .

Assumptions:

(C1) The Cauchy-problem (6), (7) has for arbitrary $y_{0} \in Y_{0}$ and $\xi_{0} \subset \equiv$ at least one solution $\{y(\cdot), \xi(\cdot)\}$.
(C2) The nonlinearity $\varphi: \mathbb{R}_{+} \times W \rightarrow$ 三 is a function having the property that $\mathcal{A}(t):=-A-B \varphi(t, C \cdot): Y_{1} \rightarrow Y_{-1}$ is a family of monotone hemicontinuous operators such that the inequality

$$
\|\mathcal{A}(t) y\|_{-1} \leq c_{1}\|y\|_{1}+c_{2}, \quad \forall y \in Y_{1}
$$

is satisfied, where $c_{1}>0$ and $c_{2} \in \mathbb{R}$ are constants not depending on $t \in[0, T]$.

For any $y \in Y_{1}$ and for any bounded set $U \subset Y_{1}$ the family of functions $\left\{(\mathcal{A}(t) \eta, y)_{-1,1}, \eta \in U\right\}$ is equicontinuous with respect to t on any compact subinterval of \mathbb{R}_{+}.
(C3) $f \in L_{\text {loc }}^{2}\left(\mathbb{R}_{+} ; Y_{-1}\right)$.
(C4) Consider only solutions y of (6),(7) for which \dot{y} belongs to $L_{\text {loc }}^{2}\left(\mathbb{R} ; Y_{-1}\right)$.

Definition 2 Suppose F and G are quadratic forms on $Y_{1} \times$ 三. The class of nonlinearities $\mathcal{N}(F, G)$ defined by F and G consists of all maps $\varphi: \mathbb{R}_{+} \times W \rightarrow$ 三 such that for any
$y(\cdot) \in L_{\text {loc }}^{2}\left(0, \infty ; Y_{1}\right)$ with $\dot{y}(\cdot) \in L_{\text {loc }}^{2}\left(0, \infty ; Y_{-1}\right)$ and any
$\xi(\cdot) \in L_{\text {loc }}^{2}(0, \infty ;$ ㅇ with $\xi(t)=\varphi(t, C y(t))$ for a.e. $t \geq 0$, it follows that $F(y(t), \xi(t)) \geq 0$ for a.e. $t \geq 0$ and for any such pair $\{y, \xi\}$) there exists a continuous functional $\Phi: W \rightarrow \mathbb{R}$ such that for any times $0 \leq s<t$ we have
$\int_{s}^{t} G(y(\tau), \xi(\tau)) d \tau \geq \Phi(C y(t))-\Phi(C y(s))$.

3. Further assumptions

(F1) $A \in \mathcal{L}\left(Y_{1}, Y_{-1}\right)$ is regular, i.e., for any $T>0, y_{0} \in Y_{1}$,
$\psi_{T} \in Y_{1}$ and $f \in L^{2}\left(0, T ; Y_{0}\right)$ the solutions of the direct problem

$$
\dot{y}=A y+f(t), y(0)=y_{0}, \quad \text { a.a. } t \in[0, T]
$$

and of the dual problem

$$
\dot{\psi}=-A^{*} \psi+f(t), \psi(T)=\psi_{T}, \quad \text { a.a. } t \in[0, T]
$$

are strongly continuous in t in the norm of Y_{1}.
$A^{*} \in \mathcal{L}\left(Y_{-1}, Y_{0}\right)$ denotes the adjoint to A, i.e.,
$(A y, \eta)_{-1,1}=\left(y, A^{*} \eta\right)_{-1,1}, \forall y, \eta \in Y_{1}$.
（F2）The pair (A, B) is L^{2}－controllable，i．e．，for arbitrary $y_{0} \in Y_{0}$ exists a control $\xi(\cdot) \in L^{2}(0, \infty$ ；三）such that the problem

$$
\dot{y}=A y+B \xi, \quad y(0)=y_{0}
$$

is well－posed on the semiaxis $[0,+\infty)$ ，i．e．，there exists a solution $y(\cdot) \in \mathcal{L}_{\infty}$ with $y(0)=y_{0}$ ．
（F3）$F(y, \xi)$ is an Hermitian form on $Y_{1} \times$ 三，i．e．，

$$
F(y, \xi)=\left(F_{1} y, y\right)_{-1,1}+2 \operatorname{Re}\left(F_{2} y, \xi\right)_{\equiv}+\left(F_{3} \xi, \xi\right)_{\equiv}
$$

where
$F_{1}=F_{1}^{*} \in \mathcal{L}\left(Y_{1}, Y_{-1}\right), F_{2} \in \mathcal{L}\left(Y_{0}\right.$, 三）,$F_{3}=F_{3}^{*} \in \mathcal{L}($ 三，三）.
Define the frequency－domain condition［Likhtarnikov and Yakubovich， 1976］

$$
\alpha:=\sup _{\omega, y, \xi}\left(\|y\|_{1}^{2}+\|\xi\| \frac{2}{\equiv}\right)^{-1} F(y, \xi)
$$

where the supremum is taken over all triples $(\omega, y, \xi) \in \mathbb{R}_{+} \times Y_{1} \times$ 三 such that $i \omega y=A y+B \xi$ ．

4. Absolute observation - stability of evolutionary equations

For a function $z(\cdot) \in L^{2}\left(\mathbb{R}_{+} ; Z\right)$ we denote their norm by

$$
\|z(\cdot)\|_{2, Z}:=\left(\int_{0}^{\infty}\|z(t)\|_{Z}^{2} d t\right)^{1 / 2}
$$

Definition 3 a) The equation (6), (7) is said to be absolutely dichotomic (i.e., in the class $\mathcal{N}(F, G)$) with respect to the observation z from (8) if for any solution $\{y(\cdot), \xi(\cdot)\}$ of (6), (7) with $y(0)=y_{0}, \xi(0)=\xi_{0}$ the following is true: Either $y(\cdot)$ is unbounded on $[0, \infty)$ in the Y_{0}-norm or $y(\cdot)$ is bounded in Y_{0} in this norm and there exist constants c_{1} and c_{2} (which depend only on A, B and $\mathcal{N}(F, G)$ such that

$$
\begin{equation*}
\|D y(\cdot)+E \xi(\cdot)\|_{2, Z}^{2} \leq c_{1}\left(\left\|y_{0}\right\|_{0}^{2}+c_{2}\right) . \tag{9}
\end{equation*}
$$

b) The equation (6), (7) is said to be absolutely stable with respect to the observation z from (8) if (9) holds for any solution $\{y(\cdot), \xi(\cdot)\}$ of (6), (7).

Definition 4 The equation (6)-(8) with $f \equiv 0$ is said to be minimally stable, i.e., there exists a bounded linear operator $K: Y_{1} \rightarrow$三 such that the operator $A+B K$ is stable, i.e. for some $\varepsilon>0$

$$
\begin{align*}
& \quad \sigma(A+B K) \subset\{s \in \mathbb{C}: \operatorname{Re} s \leq-\varepsilon<0\} \\
& F(y, K y) \geq 0, \quad \forall y \in Y_{1}, \tag{10}\\
& \text { and } \quad \int_{s}^{t} G(y(\tau), K y(\tau)) d \tau \geq 0, \tag{11}\\
& \forall s, t: 0 \leq s<t, \quad \forall y \in L_{\text {loc }}^{2}\left(\mathbb{R}_{+} ; Y_{1}\right) .
\end{align*}
$$

with

Theorem 1 Consider the evolution problem (6) - (8) with $\varphi \in \mathcal{N}(F, G)$. Suppose that for the operators A^{c}, B^{c} the assumptions (F1) and (F2) are satisfied. Suppose also that there exist an $\alpha>0$ such that with the transfer operator

$$
\begin{equation*}
\chi^{(z)}(s)=D^{c}\left(s I^{c}-A^{c}\right)^{-1} B^{c}+E^{c} \quad\left(s \notin \sigma\left(A^{c}\right)\right) \tag{12}
\end{equation*}
$$

the frequency-domain condition

$$
\begin{aligned}
& F^{c}\left(\left(i \omega I^{c}-A^{c}\right)^{-1} B^{c} \xi, \xi\right) \\
& +G^{c}\left(\left(i \omega I^{c}-A^{c}\right)^{-1} B^{c} \xi, \xi\right) \leq-\alpha\left\|\chi^{(z)}(i \omega) \xi\right\|_{Z^{c}}^{2} \\
& \forall \omega \in \mathbb{R}: i \omega \notin \sigma\left(A^{c}\right), \quad \forall \xi \in \Xi^{c}
\end{aligned}
$$

is satisfied and the functional

$$
\begin{aligned}
J(y(\cdot), \xi(\cdot)):= & \int_{0}^{\infty}\left[F^{c}(y(\tau), \xi(\tau))+G^{c}(y(\tau), \xi(\tau))\right. \\
& \left.+\alpha\left\|D^{c} y(\tau)+E^{c} \xi(\tau)\right\|_{Z^{c}}^{2}\right] d \tau
\end{aligned}
$$

is bounded from above on any set

$$
\begin{aligned}
& \mathbf{M}_{y_{0}}:=\left\{y(\cdot), \xi(\cdot): \dot{y}=A y+B \xi \text { on } \mathbb{R}_{+},\right. \\
& \left.y(0)=y_{0}, y(\cdot) \in \mathcal{L}_{\infty}, \xi(\cdot) \in L^{2}(0, \infty ; \equiv)\right\} .
\end{aligned}
$$

Suppose further that the equation (6)-(8) with $f \equiv 0$ is minimally stable, i.e., (10) and (11) are satisfied with some operator $K \in$ $\mathcal{L}\left(Y_{1}, \equiv\right)$ and that the pair $(A+B K, D+E K)$ is observable in the sense of Kalman, i.e., for any solution $y(\cdot)$ of

$$
\dot{y}=(A+B K) y, \quad y(0)=y_{0}
$$

with $z(t)=(D+E K) y(t)=0$ for a.a. $t \geq 0$ it follows that $y(0)=y_{0}=0$.
Then equation (6), (7) is absolutely stable with respect to the observation z from (8).
A. L. Likhtarnikov and V.A. Yakubovich, 1976 Reitmann, V. and H. Kantz, 2003

5. Example

Consider the coupled system of Maxwell's equation and heat transfer equation

$$
\left\{\begin{array}{l}
\Psi_{t t}+\sigma(x, \theta) \Psi_{t}-\Psi_{x x}=0 \tag{13}\\
\theta_{t}-\theta_{x x}=\sigma(x, \theta) \Psi_{t}^{2}
\end{array}\right.
$$

Initial-boundary conditions:

$$
\begin{align*}
& \Psi(0, t)=\theta(0, t)=0 \\
& \Psi(1, t)=\theta(1, t)=0 \quad \forall t \in[0, T] \\
& \Psi(x, 0)=\Psi_{0}(x), \Psi_{t}(x, 0)=\Psi_{1}(x), \theta(x, 0)=\theta_{0}(x), \quad \forall x \in \Omega \tag{14}
\end{align*}
$$

Here $x \in \Omega, t \in[0, T], T>0, \Omega=(0,1)$.
Energy inequality:

$$
\begin{aligned}
& \sup _{0 \leq t \leq T} \int_{0}^{1}\left[\Psi_{t}^{2}+\Psi_{x}^{2}\right] d x+\int_{0}^{T} \int_{0}^{1} \sigma(x, t, \theta) \Psi_{t}^{2} d x d t \\
& \leq C_{1}+C_{2} \int_{0}^{T} \int_{0}^{1}|\theta| d x d t
\end{aligned}
$$

where the constants C_{1} and C_{2} depend only on known data.
System in terms of operator equations in some function spaces:

$$
\begin{gather*}
y(x, t)=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
\Psi_{t}(x, t) \\
\Psi(x, t) \\
\theta(x, t)
\end{array}\right), \tag{15}\\
\xi(x, t)=\binom{\xi_{1}}{\xi_{2}}=\binom{\sigma(x, \theta) \Psi_{t}(x, t)}{\sigma(x, \theta) \Psi_{t}^{2}(x, t)} .
\end{gather*}
$$

Let us define operators A, B from equation (6). Let \wedge be the selfadjoint positiv operator, generated on $L^{2}(0,1)$ by the differential expression $\wedge(v)=-v_{x x}$ and zero boundary conditions (14).

Consider the following spaces $Y_{0}=L^{2}(0,1) \times L^{2}(0,1) \times L^{2}(0,1)$, $Y_{1}=W^{1,2}(0,1) \times W^{1,2}(0,1) \times W^{1,2}(0,1)$ and $\equiv=L^{2}(0,1) \times$ $L^{2}(0,1)$ as defined in Section 1. Thus ($\mathbf{F} 1$) of Theorem 1 is satisfied.

Then operators A and B are defined as follows:

$$
A=\left[\begin{array}{ccc}
-\sigma_{0} I & \wedge & 0 \tag{16}\\
-I & 0 & 0 \\
0 & 0 & -\wedge
\end{array}\right], B=\left[\begin{array}{cc}
-I & 0 \\
0 & 0 \\
0 & I
\end{array}\right]
$$

Here constant $\sigma_{0}>0$ is derived from decomposition $\sigma(x, \theta)=$ $\sigma_{0}+\bar{\sigma}(x, \theta)$.

Finally, system (13) can be written in terms of the operator equation

$$
\begin{equation*}
\frac{d y}{d t}=A y+B \xi \tag{17}
\end{equation*}
$$

Consider the quadratic form $F(y, \xi)$ defined by

$$
\begin{equation*}
F(y, \xi)=y_{1} \cdot \xi_{1}=\Psi_{t}(x, t) \cdot \sigma(x, \theta) \Psi_{t}(x, t) \tag{18}
\end{equation*}
$$

The pair (A, B) is L^{2} - controllable since the matrix operator A is stable.

Consider the eigenvalue equation for A

$$
\begin{equation*}
A v=\lambda v \tag{19}
\end{equation*}
$$

Denote by λ_{i} the eigenvalues of operator \wedge and by e_{k} its eigenvectors, such that $\left\{e_{k}\right\}_{k}$ forms a basis of $L^{2}(0,1)$.

Vector v can be decomposed in this basis $\left\{e_{k}\right\}_{k}$ as

$$
v_{i}=\sum_{k} c_{i}^{k} e_{k}
$$

Eigenvalue equation (19):

$$
\begin{gather*}
\left\{\begin{array}{l}
-v_{1}=\lambda v_{2} \\
-\sigma_{0} v_{1}+A_{0} v_{2}=\lambda v_{1} \\
-A_{0} v_{3}=\lambda v_{3}
\end{array}\right. \\
\left\{\begin{array}{l}
-\sum_{k} c_{1}^{k} e_{k}=\lambda \sum_{k} c_{2}^{k} e_{k} \\
-\sigma_{0} \sum_{k} c_{1}^{k} e_{k}+\sum_{k} \lambda_{k} c_{2}^{k} e_{k}=\lambda \sum_{k} c_{1}^{k} e_{k} \\
-\sum_{k} \lambda_{k} c_{3}^{k} e_{k}=\lambda \sum_{k} c_{3}^{k} e_{k}
\end{array}\right. \tag{20}
\end{gather*}
$$

Verification of the frequency domain condition:
Functions $\Psi(x, t), \theta(x, t), \xi(x, t)$ can be decomposed by $\left\{e_{k}\right\}_{k}$ as follows:

$$
\begin{gathered}
\Psi(x, t)=\sum_{k} \Psi^{k}(t) e_{k}, \quad \theta(x, t)=\sum_{k} \theta^{k}(t) e_{k} \\
\xi(x, t)=\sum_{k} \xi^{k}(t) e_{k}
\end{gathered}
$$

Introduce the quadratic form $\left(\Pi_{0}(i \omega) \xi, \xi\right)=\tilde{F}(y, \xi)$, where $\tilde{F}(y, \xi)$ is the extension of the quadratic form $F(y, \xi)$ to the Hermitian form (F3).

Then the matrix-function $\Pi_{0}(i \omega)$ can be presented as

$$
\begin{equation*}
\left(\Pi_{0}(i \omega) \tilde{\xi}, \tilde{\xi}\right)=\sum_{k}\left(\Pi_{0}^{k}(i \omega) \widetilde{\xi}^{k}, \widetilde{\xi}^{k}\right) \tag{21}
\end{equation*}
$$

Fourier transform with respect to t :

$$
\begin{align*}
& -\omega^{2} \widetilde{\Psi^{k}}(i \omega)+i \omega \sigma_{0} \widetilde{\Psi^{k}}(i \omega)-\lambda_{k} \widetilde{\Psi^{k}}(i \omega)+\widetilde{\xi_{1}^{k}}(i \omega)=0 \tag{22}\\
& i \omega \widetilde{\theta^{k}}(i \omega)+\lambda_{k} \widetilde{\theta^{k}}(i \omega)-\widetilde{\xi_{2}^{k}}(i \omega)=0
\end{align*}
$$

From (22) $\widetilde{\psi^{k}}$ and $\widetilde{\theta^{k}}$ can be expressed in terms of $\widetilde{\xi_{1}^{k}}, \widetilde{\xi_{2}^{k}}$ in the following way:

$$
\begin{aligned}
& \widetilde{\Psi^{k}}(i \omega)=\chi_{0}\left(i \omega, \lambda_{k}\right) \xi_{1}^{k}(i \omega), \\
& {\widetilde{\theta^{k}}}^{(i \omega)}=\chi_{1}\left(i \omega, \lambda_{k}\right) \xi_{2}^{k}(i \omega)
\end{aligned}
$$

where

$$
\begin{aligned}
& \chi_{0}\left(i \omega, \lambda_{k}\right)=\left(\omega^{2}-i \omega \sigma_{0}+\lambda_{k}\right)^{-1} \\
& \chi_{1}\left(i \omega, \lambda_{k}\right)=\left(i \omega+\lambda_{k}\right)^{-1} .
\end{aligned}
$$

($\Pi_{0}^{k}(i \omega) \widetilde{\xi^{k}}, \widetilde{\xi^{k}}$) from (21) can be written as follows:

$$
\left.\left(\Pi_{0}^{k}(i \omega) \widetilde{\xi^{k}}, \widetilde{\widetilde{\xi}^{k}}\right)\right)=\operatorname{Re} \widetilde{\Psi_{t}^{k}} \widetilde{\widetilde{\xi_{1}^{k}}}=\operatorname{Re}\left(i \omega \chi_{0}\right)\left|\widetilde{\xi_{1}^{k}}(i \omega)\right|^{2}
$$

Here the matrix $\Pi_{0}^{k}(i \omega)$ has the following form

$$
\Pi_{0}^{k}(i \omega)=\left(\begin{array}{ll}
\operatorname{Re}\left(i \omega \chi_{0}\right) & 0 \tag{23}\\
0 & 0
\end{array}\right)
$$

We have to check that

$$
\begin{equation*}
\operatorname{Re}\left(i \omega \chi_{0}\right)<0, \forall \omega \in \mathbb{R}, \omega \neq 0 \tag{24}
\end{equation*}
$$

Condition (24) is equivalent to $\operatorname{Re}\left(\frac{i \omega}{\omega^{2}-i \omega \sigma_{0}+\lambda_{k}}\right)<0$.
This is satisfied if $-\omega^{2} \sigma_{0}<0, \forall \omega \neq 0$.
Remark We can also consider another quadratic form instead of (18)

$$
\begin{equation*}
F(y, \xi)=-y_{3} \xi_{2}+a y_{1} \xi_{1}+b \xi_{1}^{2} \tag{25}
\end{equation*}
$$

For the slightly modified version of equation (13):

$$
\left\{\begin{array}{l}
\Psi_{t t}+\sigma(x, \theta) \Psi_{t}-\Psi_{x x}=0 \tag{26}\\
\theta_{t}-\theta_{x x}=\sigma(x, \theta) \Psi_{t}^{2}+\varepsilon \Psi
\end{array}\right.
$$

6. Experimental results

Consider system (13) - (14) in the form

$$
\left\{\begin{array}{l}
h_{t}+\sigma(x, \theta) h-\Psi_{x x}=0 \tag{27}\\
\Psi_{t}=h \\
\theta_{t}-\theta_{x x}=\sigma(x, \theta) h^{2}
\end{array}\right.
$$

Initial-boundary conditions:

$$
\begin{align*}
& \Psi(0, t)=\theta(0, t)=0 \\
& \Psi(1, t)=\theta(1, t)=0 \quad \forall t \in[0, T] \\
& \Psi(x, 0)=\Psi_{0}(x), h(x, 0)=h_{0}(x), \theta(x, 0)=\theta_{0}(x), \forall x \in \Omega \tag{28}
\end{align*}
$$

$h_{0}(x)=p \cdot(1-|2 x-1|), \Psi_{0}(x) \equiv 0, \theta_{0}(x)=p \cdot(1-|2 x-1|)$, where $p \in \mathbb{R}$ is some parameter.
J. Morgan, H.-M. Yin, 2001

Electrical conductivity: $\sigma(x, \theta)=c+\theta(x, t)$, where c is some positive constant.

For convention: Denote $h(x, t)$ by $\Psi_{t}(x, t)$.
Consider solutions $\left(\Psi_{t}^{p}(x, t), \Psi^{p}(x, t), \theta^{p}(x, t)\right)$ with $p \in[-0.5,0.5]$.

$$
\theta^{p}\left(x_{0}, t\right), x_{0}=0.5, t \in(0,0.25)
$$

$\theta^{p}(x, t), t \in(0,0.25), p=0.5$

$$
\psi^{p}\left(x_{0}, t\right), x_{0}=0.5, t \in(0,200)
$$

$$
\Psi^{p}(x, t), t \in(0,200), p=0.5
$$

$$
\Psi_{t}^{p}\left(x_{0}, t\right), x_{0}=0.5, t \in(0,200)
$$

$$
\Psi_{t}^{p}(x, t), t \in(0,200), p=0.5
$$

References

[1] V. Reitmann and H. Kantz, Frequency domain conditions for the existence of almost periodic solutions in evolutionary variational inequalities. Stochastics and Dynamics, 4 (3), 483 -499, 2004.
[2] V. Reitmann, Convergence in evolutionary variational inequalities with hysteresis nonlinearities. In: Proc. of Equadiff 11, Bratislava, Slovakia, 2005.
[3] V. Reitmann, Realization theory methods for the stability investigation of nonlinear infinite-dimensional input-output systems. In: Proc of Equadiff 12, Brno, Czech, 2009, Mathematica Bohemica, 2010.
[4] G.A. Leonov, and V. Reitmann, Absolute observation stability for evolutionary variational inequalities. World Scientific Publishing Co., Scientific Series on Nonlinear Science, Series B, Vol.14, 2010.

[^0]: *Supported by DAAD and the German-Russian Interdisciplinary Science Center (G-RISC)

