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1. Evolutionary variational systems

Suppose: Yy is a real Hilbert space with (-, -)o and || - ||o as scalar
product resp. norm.

A : D(A) C Yj is a closed (unbounded) densely defined linear
operator. Y1 is defined as D(A) equipped with the scalar product

(yﬂ?)l L= ((BI - A)y7 (BI - A)”)Da (TS D(A) ) (1)
where 3 € p(A) (p(A) is the resolvent set of A)

Y_; is the completion of Yy with respect to the norm ||z||-1 =
|(BI — A)~1z]|o. Thus we have the dense and continuous imbed-
ding

Y1 C Yo C Y1 (2)

(Hilbert space rigging structure). The duality pairing (-,-)_1,1 on
Y1 x Y_1 is the unique extension by continuity of the functionals
(-, y)o with y € Y7 onto Y_;.

If —co < T71 < Tn < +o0 are arbitrary numbers, we define the
norm for Bochner measurable functions in L?(T1,7%;Y;), j =
1,0,—1, through

T,
lyll; == ([ lly(@®F dt)'/?. (3)
T

For an arbitrary interval J in R denote by WW(J) the space of func-
tions y(-) € L2 _(J; Y1) for which y () € L2 _(J;Y_1) equipped

loc loc
with the norm defined for any compact interval [T1, T5] by

ly Olwenny == Uy O3+ 19 O3 (4)

Assume also: Any function from W(J) belongs to C'(J; Yo).

= is an other real Hilbert space with scalar product (-,-)= and
norm || - [|=,



J C R is an arbitrary interval.

Introduce
A:Y1—-Y 1 and B:= —>Y_; (5)
and the maps
o1 JxY — =, (6)
and f J—Y_ 1. (7)

Consider for a.a. t € J the evolutionary variational equation

(g(t) — Ay(t) — Bo(t,y(t)) — f(), n—y(t))-11 =0,
VneYr. (8)

Forany f € L2 _(J;Y_1) a function y(-) € W(J) N C(J;Yy) is

I
said to be a soolﬁtion of (8) if this equality is satisfied for all test

functions n € Y7.

2. Further assumptions

(A1) Forany t € Jthe map A(t)y := —Ay — By (t,y) : Y1 —
Y_1 is semicontinuous, i.e., forany ¢t € J and any y,n, z € Y7 the
R-valued function 7 — (A(t)(y — ™), z) 1.1 is continuous.

(A2) For any n € Y; and any bounded set S C Yi the family
of functions {(B¢ (+,y),n)-1.1,y € S} is equicontinuous on any
compact subinterval of J.

(A3) ¢ (-,0) = 0 on J and there exist operators N € £(Y1,=)
and M = M* € L(=,=) such that

(o (¢, 91) — 0 (¢, 42), N(y1, —y2))=
Z (90 (tayl) _So(t7y2)a M(QO (tayl) _Sp(t7y2))z7
VtEJ,vyl,yQEYl. (9)



(A4) There exists a quadratic form G on Yp x = and a continu-
ous functional ® : Yy — R4 such that for any y1(-),y2(-) €
L2 (J;Yp) and a.a. s,t € J,s < t, we have

/Exm@»—mvx¢vwﬂﬂ>—¢ﬁwxﬂ»m-

> 2o - n@). (10)

Furthermore, there are two constants O < p1 < p2 such that
pillylld < ®(y) < pollylls, Yy € Yo (11)

Suppose that there exists a number A > 0 such that the following
assumptions are satisfied:

(A5) Forany T' > O and any f € L?(0,T;Y_1) the problem

y= A+ A)y+ f(t),y(0) = yo, (12)
is well-posed, i.e., for arbitrary yo € Yo, f(-) € L?(0,T;Y_1) there
exists a unique solution y(-) € W(0,T) withy (-) € L?(0,T;Y_1)
satisfying the equation in a variational sense and depending con-
tinuously on the initial data, i.e.,

Iy vz < etllyollg + e2ll F(15-1 . (13)

where ¢c; > 0 and c» > 0 are some constants. Furthermore it is
supposed that any solution of y = (A 4+ A\)y, y(0) = yo, is
exponentially decreasing for t — o0, i.e., there exist constants
c3 > 0 and € > 0 such that

ly ()]0 < cze yollo, t > 0. (14)

(A6) The operator A + A\l € L£(Y1,Y_1) is regular, i.e., for any
T > 0,y0 € Y1,2r € Y1 and f € L?(0,T;Yy) the solution of the
direct problem

y= A+ A)y+ f(t), y(O)=1yo (15)



and of the dual problem

z=—(A4+ )24 f(t), =2(0) =2zp (16)
are strongly continuous in ¢ in the norm of Y;.

(A7) The pair (A + M\, B) is L?-controllable, i.e., for arbitrary
yo € Yy there exists a control £(:) € L?(0,4o0; =) such that
the problem y = (A+ X))y + BE, y(0) = yo, is well-posed in the
variational sense on (0, 4+c0).

(A8) Let denote by H¢ and L° the complexification of a linear space
H and a linear operator L, respectively, by

x(8) = (sI¢— A°)~"1B¢, s ¢ p(A°), the transfer operator, and by
Gg°¢ the Hermitian extension of G.

There exist a number © > 0 such that with p> from (11) and the
imbedding constant v from Y7 C Yo

© [Re(f, NCX(iw — >‘) g)zc + (57 MCS)EC]

+ G° (x (iw — A) £,8) + yAp2llx (lw — X) €3 < 0,
VweR, VéEec=e. (17)

(A9) For any yo € Yy there exist at least one solution y(-) of (8) on
R4 with y(0) = yo.

Uniqueness to the right and the continuous dependence of solu-
tions on initial states:

a) If y1, y» are two solutions of (8) on Ry and yi1 (to) = y2(to) for
some tg > 0 then y1(t) = y2(t), YVt > to.

b) fy(-,ar), k = 1,2,...,are solutions of (8) with y(tg, ar) = ay,
on Jo = [to, t1] or Jo = [t1,t0] and ar — a for k — oo in Yy then
there exists a subsequence k,, — oo with y(-,ar ) — yforn — oo
in C(Jo; Yo) and y is a solution of (8) on Jy with y(tp) = a.



3. Existence of bounded solutions
Let (E, || - ||g) be a Banach space.

Denote by C,(R; E) C C(R; E) the subspace of bounded contin-
uous functions with the norm || f||c, = sup || f(¢) || &
teR

The space BS?(R; E) of bounded (with exponent 2) in the sense
of Stepanov functions is the subspace of all functions f from
L2 ((R; E) which have a finite norm

t+1
13 =sup [ 1N ar (18)

Theorem 3.1 Suppose that the assumptions (A3) — (A9) are
satisfied and

f € BS?(Ry; Y1) . (19)
Then any solution y(-) of (8) belongs to C, (R4 ; Yo).

4. Existence of almost periodic solutions

Let f : R — E be continuous. If ¢ > 0, then a number T € R is
called e-almost period of f if sup||f (t +T) — f (t)||g < e.
teR

The function f is called Bohr almost periodic or uniformly almost
periodic (shortly f € CAP(R; E) or uniformly a.p.) ifforeache > 0
there is R > 0 such that each interval (r,r + R) C R (r € R)
contains at least one e-almost period of f.

For a function f € L2 _(R; E) define the

loc
Bochner transform f° by

@) = ft+n),nel0,1],teRr,
as a (continuous) function with values in L2(0, 1; E).



A function f € BS?(R; E) is called an almost periodic function in
the sense of Stepanov (shortly S2—a.p.) if f* € CAP (R; L?(0, 1; E)).

The space of S?—a.p. functions with values in E is denoted by
S?(R; E). Obviously, CAP(R; E) C S?(R; E) .

(A10) The family of functions {©(-,y),y € Y1} is uniformly almost
periodic on any set {y € Y1 : ||y||]1 < const}.

Theorem 4.1 Under the assumptions (A3) — (A9) there exists for
any f € BS?(R;Y_1) a unigue bounded on R solution y.(-) of
(8). This solution is exponentially stable in the whole, i.e., there
exist positive constants ¢ > 0 and € > 0O such that for any other
solution y of (8), any top € R and any t > to we have

ly(®) — y(Dlo < e jy(to) — yu(to)]o . (20)

If © satisfies (A10) and f € S?(R;Y_1) then y.(-) belongs to CAP
(R; Yo).

5. Examples

Example 5.1
YO — L2(07 1)7 Yl — Wl,Q(Oa 1)

1
(u,v); = /o (uv + ugzv,) do (21)

Ay — Yor, (Au,0)_11 = [ (Au)(2)v(z)de =
— fol (augve + buv) dz ¥V u,v € W12(0,1) (22)
(" Au = au — bu,'")
S—R.B:Z v, (23)
(B¢,v) 11 :=aév(l), VEER, Voe WhH2(0,1)

("B=adé(x—1)")
uz(0,1) =0, wux(1,t) =g(w(?)) + f(2), (24)



g : R — R continuous, f € LZ . (R) N CAP (R)
1

K : Y1 — R linear continuous, K (u) :/ k(x)u(x,t)dx ,

0
¢ : L?(0,1) — R given by

we L(0,1) = w(-) = K (u(-)) — g(w(-)) €R

Jpo >0 Vwi,we @ 0 < (g(wr) — g(wz))(wr — w2)
< po(wy — w2)?,

Jdc1 >0 Vwi,wr € W(0,T) Vs<t, s,te(0,T):

(23)

(26)

/ (i — 12) (p(w1) — (wa)) dr > exfwi(r) — wa(r) L (27)

x(s) = K(a(z,s)), se€C,
57 = aflgy — bl , 1(0,¢) =0, 7,(1,) =0

(5) = K ( ab cosh(:v/s + bx) )

Vs +bsinh(2y/s+b

dJ© >0 de>0 dA>0 VweR:
o Re x(iw — \) + © Re (iwx(iw — a)) > e,

Im >0 VYue WhH3(0,1) : K(u) > m||ul?
= assumptions of Theorem 4.1 are satisfied

(28)

(29)



Example 5.2

Consider the coupled system of Maxwell’s equation and heat
transfer equation

th —I— O'(SC, Q)Wt — \Umg =0 (32)
0; — Opy = o(x,0)W?

Initial-boundary conditions:

W (0,t) = g1(t) = cos(t) + cos(v/t), Vte [0,T]
0(0,t) =60(1,t) =0, Vte][0,T]

W(]-?t) — gQ(t) =0, Vte [O7T]

V(z,0) =WVo(x) =2 -2z, Ve

Vi(x,0) = WVi(x), Vre

0(x,0) = 6p(x), Vre

Here 2 = (0, 1).

(33)

Energy inequality:

1 T 1
sup / (W2 4+ W2]dx +/ / o(x,t,0)W2dxdt
0 0 0

0<t<T

T 1
§a+@//Nmmg
0] 0]

where the constants C; and C> depend only on known data.

System in terms of operator equations in some function spaces:

Y1 Wt(il?, t)
y(CIZ, t) — Y2 — \U(ZC, t) ) (34)
Y3 9(56, t)

— 5 - O'(Q?,@)Wt(x,t)
Sz, 1) = ( 3 ) - ( o (z, 0)W2(x,t) )



Let us define operators A, B from equation (8). Let A be the self-
adjoint positiv operator, generated on L2(0, 1) by the differential
expression A(v) = —v,, and zero boundary conditions (33).

Consider the following spaces Yo = L?(0, 1)x L?(0,1)xL?(0, 1),
Y, = Wh2(0,1) x Wt2(0,1) x Wt2(0,1) and = = L?(0,1) x
L?(0, 1) as defined in Section 1.

Then operators A and B are defined as follows:

ool A O I 0
A=| -I 0 0 |,B=| 0o o, (35)
0 0 —A 0 I

Here the constant oo > O is derived from decomposition
o(x,0) = oo+ o(x,0).

Finally, system (32) can be written in terms of the operator equation

dy
P Ay + B¢ (36)

Consider the quadratic form F'(y, £) defined by
F(ya g) — Y1~ 51 — \Ut(a?,t) ) O-(:Ca Q)Wt(x7 t) (37)

The pair (A, B) is L?— controllable since the matrix operator A is
stable.

Suppose that {e; }, forms a basis of L2(0, 1).
Verification of the frequency domain condition:

Functions W (x,t),0(x,t),&(x, t) can be decomposed by {ex }r as
follows:

V() =) Ve, 0(x,t)=7) 0"(er,  (38)
k k



Ela,t) =) (t)ex. (39)
k

Introduce the quadratic form (Mo (iw)é, &) = F(y, ), where F(y, €)
is the extension of the quadratic form F'(y, &) to the Hermitian form
(A3).

Then the matrix-function Mg (iw) can be presented as

(Mo(iw)E, &) =D (Nh(iw)er, ). (40)

k

Fourier transform with respect to ¢:

—WAWk(iw) + dwooWh(iw) — AWH(iw) + Ef(iw) =0 40,
w0k (iw) 4+ M\F (iw) — E5(iw) = 0

From (41) wk and 6% can be expressed in terms of 5’7;,57; in the
following way:

Wk (iw) = xo(iw, Ap)ER(iw),
Ok (iw) = x1(iw, Ap)&5(iw),
where

xo(iw, A\i) = (w? — iwog + M) 71,
x1(iw, Ap) = (iw + Ag) L

(I‘I’g(iw)gk, £k) from (40) can be written as follows:
(MG (iw)er, €F)) = Rew} ¢ = Re(iwxo)|€f (iw)|?

Here the matrix Mg (iw) has the following form

M (i) = ( oRe(inO) 8 ) (42)



We have to check that
Re(iwxo) < 0,Vw e R,w # 0 (43)

Condition (43) is equivalent to Re(z—"2—) < 0.

This is satisfied if —w?0g < 0,Vw # 0.
6. Numerical results
Consider system (32) - (33) in the form

h: +o(x,0)h — WV, =0
Oy — Oz = O'(iC, 9)]’L2

(S) Initial-boundary conditions (without perturbations):

w(0,t) = 6(0,t) = 0,

w(1,t) =60(1,t) =0 Vte[0,T]

W (z,0) = Wo(zx), h(x,0) = ho(x),0(x,0) = o(x),Vx E(Q )
45

ho(z) =p-(1—|2z—1]), Wo(x) =0, p(x) = p- (1 — |22 —1]),
where p € R is some parameter.

J. Morgan, H.-M. Yin, 2001

Electrical conductivity: o(x,0) = ¢ + 6(x,t), where c is some
positive constant.

For convention: Denote h(z,t) by W;(z,t).

Consider solutions (W7 (z,t), WP(x,t), 0P (x,t)) withp € [-0.5,0.5].
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(S3)

WP(xo,t), 0 = 0.5,t € (0,200)

(S4)

WP (z,t),t € (0,200),p = 0.5



(S3)

\Uf(xo,t),ajo = 0.5,t € (0,200)

(S6)

WP (z,t),t € (0,200),p = 0.5



(P) Initial-boundary conditions (with almost-periodic perturbations):

V(z,0) =2 —2x; h(x,0) =0;60(x,0) = 0;

W (0,t) = g1(t) = cos(t) 4+ cos(V/2t);
W(1,t) = go(t) = 0;60(0,t) =6(1,t) = 0;

(P1)

IEWaVAVaS

0(x,t),00 = 0,t € (0,50).

(P2)

0(z,t),00 =0,t € (0,10).



(P3)

W (z,t), Vo =1,t € (0,10).

(P4)

h(z,t), ho = 0,t € (0, 10).



(P3)

0(z,1),00 € (—0.5,0.5),¢ € (0,1).

(P6)

W (z,t),Wo € (1—0.5,140.5),te(0,5).



(P7)

h(z,t),ho € (—0.5,0.5),t € (0,50).
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