Frequency-domain conditions for the existence of almost-periodic solutions in coupled PDEs

V. Reitmann* and Yu. N. Kalinin

Saint-Petersburg State University, Russia
Department of Mathematics and Mechanics

8th AIMS Conference on Dynamical Systems, Differential Equations and Applications
May 25 - 28, 2010, Dresden, Germany

[^0]
1. Evolutionary variational systems

Suppose: Y_{0} is a real Hilbert space with $(\cdot, \cdot)_{0}$ and $\|\cdot\|_{0}$ as scalar product resp. norm.
$A: \mathcal{D}(A) \subset Y_{0}$ is a closed (unbounded) densely defined linear operator. Y_{1} is defined as $\mathcal{D}(A)$ equipped with the scalar product

$$
\begin{equation*}
(y, \eta)_{1}:=((\beta I-A) y,(\beta I-A) \eta)_{0}, \quad y, \eta \in \mathcal{D}(A) \tag{1}
\end{equation*}
$$

where $\beta \in \rho(A)(\rho(A)$ is the resolvent set of $A)$
Y_{-1} is the completion of Y_{0} with respect to the norm $\|z\|_{-1}=$ $\left\|(\beta I-A)^{-1} z\right\|_{0}$. Thus we have the dense and continuous imbedding

$$
\begin{equation*}
Y_{1} \subset Y_{0} \subset Y_{-1} \tag{2}
\end{equation*}
$$

(Hilbert space rigging structure). The duality pairing $(\cdot, \cdot)_{-1,1}$ on $Y_{1} \times Y_{-1}$ is the unique extension by continuity of the functionals $(\cdot, y)_{0}$ with $y \in Y_{1}$ onto Y_{-1}.

If $-\infty \leq T_{1}<T_{2} \leq+\infty$ are arbitrary numbers, we define the norm for Bochner measurable functions in $L^{2}\left(T_{1}, T_{2} ; Y_{j}\right), j=$ $1,0,-1$, through

$$
\begin{equation*}
\|y\|_{2, j}:=\left(\int_{T_{1}}^{T_{2}}\|y(t)\|_{j}^{2} d t\right)^{1 / 2} \tag{3}
\end{equation*}
$$

For an arbitrary interval J in \mathbb{R} denote by $\mathcal{W}(J)$ the space of functions $y(\cdot) \in L_{\text {loc }}^{2}\left(J ; Y_{1}\right)$ for which $\dot{y}(\cdot) \in L_{\text {loc }}^{2}\left(J ; Y_{-1}\right)$ equipped with the norm defined for any compact interval [T_{1}, T_{2}] by

$$
\begin{equation*}
\|y(\cdot)\|_{\mathcal{W}\left(T_{1}, T_{2}\right)}:=\left(\|y(\cdot)\|_{2,1}^{2}+\|\dot{y}(\cdot)\|_{2,-1}^{2}\right)^{1 / 2} . \tag{4}
\end{equation*}
$$

Assume also: Any function from $\mathcal{W}(J)$ belongs to $C\left(J ; Y_{0}\right)$.
三 is an other real Hilbert space with scalar product (\cdot, \cdot) 三 and norm $\|\cdot\| \equiv$,
$J \subset \mathbb{R}$ is an arbitrary interval.
Introduce

$$
\begin{equation*}
A: Y_{1} \rightarrow Y_{-1} \quad \text { and } \quad B: \equiv \rightarrow Y_{-1} \tag{5}
\end{equation*}
$$

and the maps

$$
\begin{array}{ll}
& \varphi: J \times Y_{1} \rightarrow \equiv, \\
\text { and } & f: J \rightarrow Y_{-1} .
\end{array}
$$

Consider for a.a. $t \in J$ the evolutionary variational equation

$$
\begin{array}{r}
(\dot{y}(t)-A y(t)-B \varphi(t, y(t))-f(t), \eta-y(t))_{-1,1}=0, \\
\forall \eta \in Y_{1} . \tag{8}
\end{array}
$$

For any $f \in L_{\text {loc }}^{2}\left(J ; Y_{-1}\right)$ a function $y(\cdot) \in \mathcal{W}(J) \cap C\left(J ; Y_{0}\right)$ is said to be a solution of (8) if this equality is satisfied for all test functions $\eta \in Y_{1}$.

2. Further assumptions

(A1) For any $t \in J$ the map $\mathcal{A}(t) y:=-A y-B \varphi(t, y): Y_{1} \rightarrow$ Y_{-1} is semicontinuous, i.e., for any $t \in J$ and any $y, \eta, z \in Y_{1}$ the \mathbb{R}-valued function $\tau \mapsto(\mathcal{A}(t)(y-\tau \eta), z)_{-1,1}$ is continuous.
(A2) For any $\eta \in Y_{1}$ and any bounded set $S \subset Y_{1}$ the family of functions $\left\{(B \varphi(\cdot, y), \eta)_{-1,1}, y \in S\right\}$ is equicontinuous on any compact subinterval of J.
(A3) $\varphi(\cdot, 0) \equiv 0$ on J and there exist operators $N \in \mathcal{L}\left(Y_{1}, \equiv\right)$ and $M=M^{*} \in \mathcal{L}($ 三, 三) such that

$$
\begin{align*}
& \left(\varphi\left(t, y_{1}\right)-\varphi\left(t, y_{2}\right), N\left(y_{1},-y_{2}\right)\right) \equiv \\
& \geq\left(\varphi\left(t, y_{1}\right)-\varphi\left(t, y_{2}\right), M\left(\varphi\left(t, y_{1}\right)-\varphi\left(t, y_{2}\right)\right)_{\equiv},\right. \\
& \forall t \in J, \forall y_{1}, y_{2} \in Y_{1} \tag{9}
\end{align*}
$$

(A4) There exists a quadratic form \mathcal{G} on $Y_{0} \times \equiv$ and a continuous functional $\Phi: Y_{0} \rightarrow \mathbb{R}_{+}$such that for any $y_{1}(\cdot), y_{2}(\cdot) \in$ $L_{\text {loc }}^{2}\left(J ; Y_{0}\right)$ and a.a. $s, t \in J, s<t$, we have

$$
\begin{align*}
\int_{s}^{t} \mathcal{G}\left(y_{1}(\tau)-y_{2}(\tau), \varphi(\tau,\right. & \left.\left.y_{1}(\tau)\right)-\varphi\left(\tau, y_{2}(\tau)\right)\right) d \tau \\
& \geq\left.\frac{1}{2} \Phi\left(y_{1}(\tau)-y_{2}(\tau)\right)\right|_{s} ^{t} \tag{10}
\end{align*}
$$

Furthermore, there are two constants $0<\rho_{1}<\rho_{2}$ such that

$$
\begin{equation*}
\rho_{1}\|y\|_{0}^{2} \leq \Phi(y) \leq \rho_{2}\|y\|_{0}^{2}, \quad \forall y \in Y_{0} . \tag{11}
\end{equation*}
$$

Suppose that there exists a number $\lambda>0$ such that the following assumptions are satisfied:
(A5) For any $T>0$ and any $f \in L^{2}\left(0, T ; Y_{-1}\right)$ the problem

$$
\begin{equation*}
\dot{y}=(A+\lambda I) y+f(t), y(0)=y_{0}, \tag{12}
\end{equation*}
$$

is well-posed, i.e., for arbitrary $y_{0} \in Y_{0}, f(\cdot) \in L^{2}\left(0, T ; Y_{-1}\right)$ there exists a unique solution $y(\cdot) \in \mathcal{W}(0, T)$ with $\dot{y}(\cdot) \in L^{2}\left(0, T ; Y_{-1}\right)$ satisfying the equation in a variational sense and depending continuously on the initial data, i.e.,

$$
\begin{equation*}
\|y(\cdot)\|_{\mathcal{W}(0, T)}^{2} \leq c_{1}\left\|y_{0}\right\|_{0}^{2}+c_{2}\|f(\cdot)\|_{2,-1}^{2} \tag{13}
\end{equation*}
$$

where $c_{1}>0$ and $c_{2}>0$ are some constants. Furthermore it is supposed that any solution of $\dot{y}=(A+\lambda I) y, y(0)=y_{0}$, is exponentially decreasing for $t \rightarrow+\infty$, i.e., there exist constants $c_{3}>0$ and $\varepsilon>0$ such that

$$
\begin{equation*}
\|y(t)\|_{0} \leq c_{3} e^{-\varepsilon t}\left\|y_{0}\right\|_{0}, t>0 \tag{14}
\end{equation*}
$$

(A6) The operator $A+\lambda I \in \mathcal{L}\left(Y_{1}, Y_{-1}\right)$ is regular, i.e., for any $T>0, y_{0} \in Y_{1}, z_{T} \in Y_{1}$ and $f \in L^{2}\left(0, T ; Y_{0}\right)$ the solution of the direct problem

$$
\begin{equation*}
\dot{y}=(A+\lambda I) y+f(t), \quad y(0)=y_{0} \tag{15}
\end{equation*}
$$

and of the dual problem

$$
\begin{equation*}
\dot{z}=-(A+\lambda I)^{*} z+f(t), \quad z(0)=z_{T} \tag{16}
\end{equation*}
$$

are strongly continuous in t in the norm of Y_{1}.
(A7) The pair $(A+\lambda I, B)$ is L^{2}-controllable, i.e., for arbitrary $y_{0} \in Y_{0}$ there exists a control $\xi(\cdot) \in L^{2}(0,+\infty$; 三) such that the problem $\dot{y}=(A+\lambda I) y+B \xi, y(0)=y_{0}$, is well-posed in the variational sense on $(0,+\infty)$.
(A8) Let denote by H^{c} and L^{c} the complexification of a linear space H and a linear operator L, respectively, by
$\chi(s)=\left(s I^{c}-A^{c}\right)^{-1} B^{c}, s \notin \rho\left(A^{c}\right)$, the transfer operator, and by \mathcal{G}^{c} the Hermitian extension of \mathcal{G}.

There exist a number $\Theta>0$ such that with ρ_{2} from (11) and the imbedding constant γ from $Y_{1} \subset Y_{0}$

$$
\begin{array}{r}
\Theta\left[\operatorname{Re}\left(\xi, N^{c} \chi(i \omega-\lambda) \xi\right)_{\Xi^{c}}+\left(\xi, M^{c} \xi\right)_{\Xi^{c}}\right] \\
+\mathcal{G}^{c}(\chi(i \omega-\lambda) \xi, \xi)+\gamma \lambda \rho_{2}\|\chi(i \omega-\lambda) \xi\|_{Y_{1}^{c}}^{2}<0, \\
\forall \omega \in \mathbb{R}, \forall \xi \in \Xi^{c} . \tag{17}
\end{array}
$$

(A9) For any $y_{0} \in Y_{0}$ there exist at least one solution $y(\cdot)$ of (8) on \mathbb{R}_{+}with $y(0)=y_{0}$.

Uniqueness to the right and the continuous dependence of solutions on initial states:
a) If y_{1}, y_{2} are two solutions of (8) on \mathbb{R}_{+}and $y_{1}\left(t_{0}\right)=y_{2}\left(t_{0}\right)$ for some $t_{0} \geq 0$ then $y_{1}(t)=y_{2}(t), \forall t \geq t_{0}$.
b) If $y\left(\cdot, a_{k}\right), k=1,2, \ldots$, are solutions of (8) with $y\left(t_{0}, a_{k}\right)=a_{k}$ on $J_{0}=\left[t_{0}, t_{1}\right]$ or $J_{0}=\left[t_{1}, t_{0}\right]$ and $a_{k} \rightarrow a$ for $k \rightarrow \infty$ in Y_{0} then there exists a subsequence $k_{n} \rightarrow \infty$ with $y\left(\cdot, a_{k_{n}}\right) \rightarrow y$ for $n \rightarrow \infty$ in $C\left(J_{0} ; Y_{0}\right)$ and y is a solution of (8) on J_{0} with $y\left(t_{0}\right)=a$.

3. Existence of bounded solutions

Let $\left(E,\|\cdot\|_{E}\right)$ be a Banach space.
Denote by $C_{b}(\mathbb{R} ; E) \subset C(\mathbb{R} ; E)$ the subspace of bounded continuous functions with the norm $\|f\|_{C_{b}}=\sup _{t \in \mathbb{R}}\|f(t)\|_{E}$.

The space $B S^{2}(\mathbb{R} ; E)$ of bounded (with exponent 2) in the sense of Stepanov functions is the subspace of all functions f from $L_{\text {loc }}^{2}(\mathbb{R} ; E)$ which have a finite norm

$$
\begin{equation*}
\|f\|_{S^{2}}^{2}=\sup _{t \in \mathbb{R}} \int_{t}^{t+1}\|f(\tau)\|_{E}^{2} d \tau \tag{18}
\end{equation*}
$$

Theorem 3.1 Suppose that the assumptions (A3) - (A9) are satisfied and

$$
\begin{equation*}
f \in B S^{2}\left(\mathbb{R}_{+} ; Y_{-1}\right) . \tag{19}
\end{equation*}
$$

Then any solution $y(\cdot)$ of (8) belongs to $C_{b}\left(\mathbb{R}_{+} ; Y_{0}\right)$.

4. Existence of almost periodic solutions

Let $f: \mathbb{R} \rightarrow E$ be continuous. If $\varepsilon>0$, then a number $T \in \mathbb{R}$ is called ε-almost period of f if $\sup _{t \in \mathbb{R}}\|f(t+T)-f(t)\|_{E} \leq \varepsilon$.

The function f is called Bohr almost periodic or uniformly almost periodic (shortly $f \in \operatorname{CAP}(\mathbb{R} ; E)$ or uniformly a.p.) if for each $\varepsilon>0$ there is $R>0$ such that each interval $(r, r+R) \subset \mathbb{R}(r \in \mathbb{R})$ contains at least one ε-almost period of f.

For a function $f \in L_{\text {loc }}^{2}(\mathbb{R} ; E)$ define the Bochner transform f^{b} by

$$
f^{b}(t):=f(t+\eta), \eta \in[0,1], t \in \mathbb{R}
$$

as a (continuous) function with values in $L^{2}(0,1 ; E)$.

A function $f \in B S^{2}(\mathbb{R} ; E)$ is called an almost periodic function in the sense of Stepanov (shortly S^{2}-a.p.) if $f^{b} \in \operatorname{CAP}\left(\mathbb{R} ; L^{2}(0,1 ; E)\right.$).

The space of S^{2}-a.p. functions with values in E is denoted by $S^{2}(\mathbb{R} ; E)$. Obviously, $\operatorname{CAP}(\mathbb{R} ; E) \subset S^{2}(\mathbb{R} ; E)$.
(A10) The family of functions $\left\{\varphi(\cdot, y), y \in Y_{1}\right\}$ is uniformly almost periodic on any set $\left\{y \in Y_{1}:\|y\|_{1} \leq\right.$ const $\}$.

Theorem 4.1 Under the assumptions (A3) - (A9) there exists for any $f \in B S^{2}\left(\mathbb{R} ; Y_{-1}\right)$ a unique bounded on \mathbb{R} solution $y_{*}(\cdot)$ of (8). This solution is exponentially stable in the whole, i.e., there exist positive constants $c>0$ and $\varepsilon>0$ such that for any other solution y of (8), any $t_{0} \in \mathbb{R}$ and any $t \geq t_{0}$ we have

$$
\begin{equation*}
\left\|y(t)-y_{*}(t)\right\|_{0} \leq c e^{-\varepsilon\left(t-t_{0}\right)}\left\|y\left(t_{0}\right)-y_{*}\left(t_{0}\right)\right\|_{0} . \tag{20}
\end{equation*}
$$

If φ satisfies (A10) and $f \in S^{2}\left(\mathbb{R} ; Y_{-1}\right)$ then $y_{*}(\cdot)$ belongs to CAP $\left(\mathbb{R} ; Y_{0}\right)$.

5. Examples

Example 5.1

$$
\begin{gather*}
Y_{0}=L^{2}(0,1), \quad Y_{1}=W^{1,2}(0,1) \\
(u, v)_{1}=\int_{0}^{1}\left(u v+u_{x} v_{x}\right) d x \tag{21}\\
A: Y_{1} \rightarrow Y_{-1},(A u, v)_{-1,1}=\int_{0}^{1}(A u)(x) v(x) d x:= \\
-\int_{0}^{1}\left(a u_{x} v_{x}+b u v\right) d x, \forall u, v \in W^{1,2}(0,1) \tag{22}\\
\left({ }^{\prime \prime} A u=a u-b u_{x} "\right) \\
\equiv=\mathbb{R}, B: \equiv \rightarrow Y_{-1}, \tag{23}\\
(B \xi, v)_{-1,1}:=a \xi v(1), \quad \forall \xi \in \mathbb{R}, \forall v \in W^{1,2}(0,1) \\
\left(" B=a \delta(x-1)^{\prime \prime}\right) \\
u_{x}(0, t)=0, \quad u_{x}(1, t)=g(w(t))+f(t) \tag{24}
\end{gather*}
$$

$g: \mathbb{R} \rightarrow \mathbb{R}$ continuous, $f \in L_{\text {loc }}^{2}(\mathbb{R}) \cap \operatorname{CAP}(\mathbb{R})$
$K: Y_{1} \rightarrow \mathbb{R} \quad$ linear continuous, $K(u)=\int_{0}^{1} k(x) u(x, t) d x$,
$\varphi: L^{2}(0,1) \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
u \in L^{2}(0,1) \mapsto w(\cdot)=K(u(\cdot)) \mapsto g(w(\cdot)) \in \mathbb{R} \tag{25}
\end{equation*}
$$

$$
\exists \mu_{0}>0 \quad \forall w_{1}, w_{2}: 0 \leq\left(g\left(w_{1}\right)-g\left(w_{2}\right)\right)\left(w_{1}-w_{2}\right)
$$

$$
\begin{equation*}
\leq \mu_{0}\left(w_{1}-w_{2}\right)^{2} \tag{26}
\end{equation*}
$$

$$
\exists c_{1}>0 \quad \forall w_{1}, w_{2} \in \mathcal{W}(0, T) \quad \forall s<t, s, t \in(0, T):
$$

$$
\int_{s}^{t}\left(\dot{w}_{1}-\dot{w}_{2}\right)\left(\varphi\left(w_{1}\right)-\varphi\left(w_{2}\right)\right) d \tau \geq\left. c_{1}\left|w_{1}(\tau)-w_{2}(\tau)\right|^{2}\right|_{s} ^{t}(27)
$$

$$
\begin{gather*}
\chi(s)=K(\tilde{u}(x, s)), s \in \mathbb{C} \tag{28}\\
s \tilde{u}=a \tilde{u}_{x x}-b \tilde{u}, \tilde{u}_{x}(0, t)=0, \tilde{u}_{x}(1, t)=0
\end{gather*}
$$

$$
\begin{equation*}
\chi(s)=K\left(\frac{a b \cosh \left(\frac{1}{a} \sqrt{s+b x}\right)}{\sqrt{s+b} \sinh \left(\frac{1}{a} \sqrt{s+b}\right.}\right) \tag{29}
\end{equation*}
$$

$$
\exists \Theta>0 \quad \exists \varepsilon>0 \quad \exists \lambda>0 \quad \forall \omega \in \mathbb{R}:
$$

$$
\begin{equation*}
\mu_{0} \operatorname{Re} \chi(i \omega-\lambda)+\Theta \operatorname{Re}(i \omega \chi(i \omega-\alpha)) \geq \varepsilon \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
\exists m>0 \quad \forall u \in W^{1,2}(0,1): K(u) \geq m\|u\|_{1}^{2} \tag{31}
\end{equation*}
$$

\Rightarrow assumptions of Theorem 4.1 are satisfied

Example 5.2
Consider the coupled system of Maxwell's equation and heat transfer equation

$$
\left\{\begin{array}{l}
\Psi_{t t}+\sigma(x, \theta) \Psi_{t}-\Psi_{x x}=0 \tag{32}\\
\theta_{t}-\theta_{x x}=\sigma(x, \theta) \Psi_{t}^{2}
\end{array}\right.
$$

Initial-boundary conditions:

$$
\begin{align*}
& \Psi(0, t)=g_{1}(t)=\cos (t)+\cos (\sqrt[2]{t}), \quad \forall t \in[0, T] \\
& \theta(0, t)=\theta(1, t)=0, \quad \forall t \in[0, T] \\
& \Psi(1, t)=g_{2}(t)=0, \quad \forall t \in[0, T] \tag{33}\\
& \Psi(x, 0)=\Psi_{0}(x)=2-2 x, \quad \forall x \in \Omega \\
& \Psi_{t}(x, 0)=\Psi_{1}(x), \quad \forall x \in \Omega \\
& \theta(x, 0)=\theta_{0}(x), \quad \forall x \in \Omega
\end{align*}
$$

Here $\Omega=(0,1)$.
Energy inequality:

$$
\begin{aligned}
& \sup _{0 \leq t \leq T} \int_{0}^{1}\left[\Psi_{t}^{2}+\Psi_{x}^{2}\right] d x+\int_{0}^{T} \int_{0}^{1} \sigma(x, t, \theta) \Psi_{t}^{2} d x d t \\
& \leq C_{1}+C_{2} \int_{0}^{T} \int_{0}^{1}|\theta| d x d t
\end{aligned}
$$

where the constants C_{1} and C_{2} depend only on known data.
System in terms of operator equations in some function spaces:

$$
\begin{gather*}
y(x, t)=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
\Psi_{t}(x, t) \\
\Psi(x, t) \\
\theta(x, t)
\end{array}\right), \tag{34}\\
\xi(x, t)=\binom{\xi_{1}}{\xi_{2}}=\binom{\sigma(x, \theta) \Psi_{t}(x, t)}{\sigma(x, \theta) \Psi_{t}^{2}(x, t)} .
\end{gather*}
$$

Let us define operators A, B from equation (8). Let \wedge be the selfadjoint positiv operator, generated on $L^{2}(0,1)$ by the differential expression $\wedge(v)=-v_{x x}$ and zero boundary conditions (33).

Consider the following spaces $Y_{0}=L^{2}(0,1) \times L^{2}(0,1) \times L^{2}(0,1)$, $Y_{1}=W^{1,2}(0,1) \times W^{1,2}(0,1) \times W^{1,2}(0,1)$ and $\equiv=L^{2}(0,1) \times$ $L^{2}(0,1)$ as defined in Section 1.

Then operators A and B are defined as follows:

$$
A=\left[\begin{array}{ccc}
-\sigma_{0} I & \wedge & 0 \tag{35}\\
-I & 0 & 0 \\
0 & 0 & -\wedge
\end{array}\right], B=\left[\begin{array}{cc}
-I & 0 \\
0 & 0 \\
0 & I
\end{array}\right]
$$

Here the constant $\sigma_{0}>0$ is derived from decomposition $\sigma(x, \theta)=\sigma_{0}+\bar{\sigma}(x, \theta)$.

Finally, system (32) can be written in terms of the operator equation

$$
\begin{equation*}
\frac{d y}{d t}=A y+B \xi \tag{36}
\end{equation*}
$$

Consider the quadratic form $F(y, \xi)$ defined by

$$
\begin{equation*}
F(y, \xi)=y_{1} \cdot \xi_{1}=\Psi_{t}(x, t) \cdot \sigma(x, \theta) \Psi_{t}(x, t) \tag{37}
\end{equation*}
$$

The pair (A, B) is L^{2} - controllable since the matrix operator A is stable.

Suppose that $\left\{e_{k}\right\}_{k}$ forms a basis of $L^{2}(0,1)$.
Verification of the frequency domain condition:
Functions $\Psi(x, t), \theta(x, t), \xi(x, t)$ can be decomposed by $\left\{e_{k}\right\}_{k}$ as follows:

$$
\begin{equation*}
\Psi(x, t)=\sum_{k} \Psi^{k}(t) e_{k}, \quad \theta(x, t)=\sum_{k} \theta^{k}(t) e_{k} \tag{38}
\end{equation*}
$$

$$
\begin{equation*}
\xi(x, t)=\sum_{k} \xi^{k}(t) e_{k} \tag{39}
\end{equation*}
$$

Introduce the quadratic form $\left(\Pi_{0}(i \omega) \xi, \xi\right)=\tilde{F}(y, \xi)$, where $\tilde{F}(y, \xi)$ is the extension of the quadratic form $F(y, \xi)$ to the Hermitian form (A3).

Then the matrix-function $\Pi_{0}(i \omega)$ can be presented as

$$
\begin{equation*}
\left(\Pi_{0}(i \omega) \tilde{\xi}, \tilde{\xi}\right)=\sum_{k}\left(\Pi_{0}^{k}(i \omega) \widetilde{\xi^{k}}, \widetilde{\xi^{k}}\right) \tag{40}
\end{equation*}
$$

Fourier transform with respect to t :

$$
\begin{align*}
& -\omega^{2} \widetilde{\Psi^{k}}(i \omega)+i \omega \sigma_{0} \widetilde{\Psi^{k}}(i \omega)-\lambda_{k} \widetilde{\Psi^{k}}(i \omega)+\widetilde{\xi_{1}^{k}}(i \omega)=0 \tag{41}\\
& i \omega \widetilde{\theta^{k}}(i \omega)+\lambda_{k} \widetilde{\theta^{k}}(i \omega)-\widetilde{\xi_{2}^{k}}(i \omega)=0
\end{align*}
$$

From (41) $\widetilde{\Psi^{k}}$ and $\widetilde{\theta^{k}}$ can be expressed in terms of $\widetilde{\xi_{1}^{k}}, \widetilde{\xi_{2}^{k}}$ in the following way:

$$
\begin{aligned}
& \widetilde{\psi^{k}}(i \omega)=\chi_{0}\left(i \omega, \lambda_{k}\right) \xi_{1}^{k}(i \omega), \\
& {\widetilde{\theta^{k}}}^{(i \omega)}=\chi_{1}\left(i \omega, \lambda_{k}\right) \xi_{2}^{k}(i \omega)
\end{aligned}
$$

where

$$
\begin{aligned}
& \chi_{0}\left(i \omega, \lambda_{k}\right)=\left(\omega^{2}-i \omega \sigma_{0}+\lambda_{k}\right)^{-1} \\
& \chi_{1}\left(i \omega, \lambda_{k}\right)=\left(i \omega+\lambda_{k}\right)^{-1}
\end{aligned}
$$

($\Pi_{0}^{k}(i \omega) \widetilde{\xi^{k}}, \widetilde{\xi^{k}}$) from (40) can be written as follows:

$$
\left.\left(\Pi_{0}^{k}(i \omega) \widetilde{\xi^{k}}, \widetilde{\tilde{\xi}^{k}}\right)\right)=\operatorname{Re} \widetilde{\psi_{t}^{k}} \widetilde{\bar{\xi}_{1}^{k}}=\operatorname{Re}\left(i \omega \chi_{0}\right)\left|\widetilde{\xi_{1}^{k}}(i \omega)\right|^{2}
$$

Here the matrix $\Pi_{0}^{k}(i \omega)$ has the following form

$$
\Pi_{0}^{k}(i \omega)=\left(\begin{array}{ll}
\operatorname{Re}\left(i \omega \chi_{0}\right) & 0 \tag{42}\\
0 & 0
\end{array}\right)
$$

We have to check that

$$
\begin{equation*}
\operatorname{Re}\left(i \omega \chi_{0}\right)<0, \forall \omega \in \mathbb{R}, \omega \neq 0 \tag{43}
\end{equation*}
$$

Condition (43) is equivalent to $\operatorname{Re}\left(\frac{i \omega}{\omega^{2}-i \omega \sigma_{0}+\lambda_{k}}\right)<0$.
This is satisfied if $-\omega^{2} \sigma_{0}<0, \forall \omega \neq 0$.

6. Numerical results

Consider system (32) - (33) in the form

$$
\left\{\begin{array}{l}
h_{t}+\sigma(x, \theta) h-\Psi_{x x}=0 \tag{44}\\
\Psi_{t}=h \\
\theta_{t}-\theta_{x x}=\sigma(x, \theta) h^{2}
\end{array}\right.
$$

(S) Initial-boundary conditions (without perturbations):

$$
\begin{align*}
& \Psi(0, t)=\theta(0, t)=0 \\
& \Psi(1, t)=\theta(1, t)=0 \quad \forall t \in[0, T] \\
& \Psi(x, 0)=\Psi_{0}(x), h(x, 0)=h_{0}(x), \theta(x, 0)=\theta_{0}(x), \forall x \in \Omega \tag{45}
\end{align*}
$$

$h_{0}(x)=p \cdot(1-|2 x-1|), \Psi_{0}(x) \equiv 0, \theta_{0}(x)=p \cdot(1-|2 x-1|)$, where $p \in \mathbb{R}$ is some parameter.
J. Morgan, H.-M. Yin, 2001

Electrical conductivity: $\sigma(x, \theta)=c+\theta(x, t)$, where c is some positive constant.

For convention: Denote $h(x, t)$ by $\Psi_{t}(x, t)$.
Consider solutions $\left(\Psi_{t}^{p}(x, t), \Psi^{p}(x, t), \theta^{p}(x, t)\right)$ with $p \in[-0.5,0.5]$.
(S1)

$$
\theta^{p}\left(x_{0}, t\right), x_{0}=0.5, t \in(0,0.25)
$$

(S2)

(S3)

$$
\Psi^{p}\left(x_{0}, t\right), x_{0}=0.5, t \in(0,200)
$$

(S4)

$$
\psi^{p}(x, t), t \in(0,200), p=0.5
$$

(S5)

$$
\Psi_{t}^{p}\left(x_{0}, t\right), x_{0}=0.5, t \in(0,200)
$$

(S6)

$$
\Psi_{t}^{p}(x, t), t \in(0,200), p=0.5
$$

(P) Initial-boundary conditions (with almost-periodic perturbations):

$$
\begin{gathered}
\Psi(x, 0)=2-2 x ; h(x, 0)=0 ; \theta(x, 0)=0 \\
\Psi(0, t)=g_{1}(t)=\cos (t)+\cos (\sqrt{2} t) \\
\Psi(1, t)=g_{2}(t)=0 ; \theta(0, t)=\theta(1, t)=0
\end{gathered}
$$

(P1)

$$
\theta(x, t), \theta_{0}=0, t \in(0,50)
$$

(P2)

$$
\theta(x, t), \theta_{0}=0, t \in(0,10)
$$

(P3)

$$
\Psi(x, t), \Psi_{0}=1, t \in(0,10)
$$

(P4)

$$
h(x, t), h_{0}=0, t \in(0,10) .
$$

(P5)

$\theta(x, t), \theta_{0} \in(-0.5,0.5), t \in(0,1)$.
(P6)

$$
\Psi(x, t), \Psi_{0} \in(1-0.5,1+0.5), t \in(0,5)
$$

$$
h(x, t), h_{0} \in(-0.5,0.5), t \in(0,50)
$$

References

[1] V. Reitmann and H. Kantz, Frequency domain conditions for the existence of almost periodic solutions in evolutionary variational inequalities. Stochastics and Dynamics, 4 (3), 483 - 499, 2004.
[2] V. Reitmann, Convergence in evolutionary variational inequalities with hysteresis nonlinearities. In: Proc. of Equadiff 11, Bratislava, Slovakia, 2005.
[3] V. Reitmann, Realization theory methods for the stability investigation of nonlinear infinite-dimensional input-output systems. In: Proc of Equadiff 12, Brno, Czech, 2009, Mathematica Bohemica, 2010.
[4] G.A. Leonov, and V. Reitmann, Absolute observation stability for evolutionary variational inequalities. World Scientific Publishing Co., Scientific Series on Nonlinear Science, Series B, Vol.14, 2010.

[^0]: *Supported by DAAD and the German-Russian Interdisciplinary Science Center (G-RISC)

