Frequency-domain conditions for the existence of almost-periodic solutions in coupled PDEs

V. Reitmann* and Yu. N. Kalinin

Saint-Petersburg State University, Russia Department of Mathematics and Mechanics

8th AIMS Conference on Dynamical Systems, Differential Equations and Applications May 25 — 28, 2010, Dresden, Germany

*Supported by DAAD and the German-Russian Interdisciplinary Science Center (G-RISC)

1. Evolutionary variational systems

Suppose: Y_0 is a real Hilbert space with $(\cdot, \cdot)_0$ and $\|\cdot\|_0$ as scalar product resp. norm.

 $A : \mathcal{D}(A) \subset Y_0$ is a closed (unbounded) densely defined linear operator. Y_1 is defined as $\mathcal{D}(A)$ equipped with the scalar product

$$(y,\eta)_1 := ((\beta I - A)y, (\beta I - A)\eta)_0, \quad y,\eta \in \mathcal{D}(A), \quad (1)$$

where $\beta \in \rho(A)$ ($\rho(A)$ is the resolvent set of A)

 Y_{-1} is the completion of Y_0 with respect to the norm $||z||_{-1} = ||(\beta I - A)^{-1}z||_0$. Thus we have the dense and continuous imbedding

$$Y_1 \subset Y_0 \subset Y_{-1} \tag{2}$$

(Hilbert space rigging structure). The duality pairing $(\cdot, \cdot)_{-1,1}$ on $Y_1 \times Y_{-1}$ is the unique extension by continuity of the functionals $(\cdot, y)_0$ with $y \in Y_1$ onto Y_{-1} .

If $-\infty \leq T_1 < T_2 \leq +\infty$ are arbitrary numbers, we define the norm for Bochner measurable functions in $L^2(T_1, T_2; Y_j)$, j = 1, 0, -1, through

$$\|y\|_{2,j} := \left(\int_{T_1}^{T_2} \|y(t)\|_j^2 dt\right)^{1/2}.$$
 (3)

For an arbitrary interval J in \mathbb{R} denote by $\mathcal{W}(J)$ the space of functions $y(\cdot) \in L^2_{\text{loc}}(J; Y_1)$ for which $\dot{y}(\cdot) \in L^2_{\text{loc}}(J; Y_{-1})$ equipped with the norm defined for any compact interval $[T_1, T_2]$ by

$$\|y(\cdot)\|_{\mathcal{W}(T_1,T_2)} := (\|y(\cdot)\|_{2,1}^2 + \|\dot{y}(\cdot)\|_{2,-1}^2)^{1/2}.$$
 (4)

Assume also: Any function from $\mathcal{W}(J)$ belongs to $C(J; Y_0)$.

 Ξ is an other real Hilbert space with scalar product $(\cdot,\cdot)_{\Xi}$ and norm $\|\cdot\|_{\Xi}\,,$

 $J \subset \mathbb{R}$ is an arbitrary interval.

Introduce

$$A: Y_1 \to Y_{-1} \quad \text{and} \quad B: \Xi \to Y_{-1} \tag{5}$$

and the maps

$$\varphi: J \times Y_1 \to \Xi, \tag{6}$$

$$f: J \to Y_{-1} \,. \tag{7}$$

Consider for a.a. $t \in J$ the evolutionary variational equation

$$(\dot{y}(t) - Ay(t) - B\varphi(t, y(t)) - f(t), \eta - y(t))_{-1,1} = 0,$$

 $\forall \eta \in Y_1.$ (8)

For any $f \in L^2_{loc}(J; Y_{-1})$ a function $y(\cdot) \in W(J) \cap C(J; Y_0)$ is said to be a solution of (8) if this equality is satisfied for all test functions $\eta \in Y_1$.

2. Further assumptions

(A1) For any $t \in J$ the map $\mathcal{A}(t)y := -Ay - B\varphi(t, y) : Y_1 \rightarrow Y_{-1}$ is semicontinuous, i.e., for any $t \in J$ and any $y, \eta, z \in Y_1$ the \mathbb{R} -valued function $\tau \mapsto (\mathcal{A}(t)(y - \tau \eta), z)_{-1,1}$ is continuous.

(A2) For any $\eta \in Y_1$ and any bounded set $S \subset Y_1$ the family of functions $\{(B\varphi(\cdot, y), \eta)_{-1,1}, y \in S\}$ is equicontinuous on any compact subinterval of J.

(A3) $\varphi(\cdot, 0) \equiv 0$ on J and there exist operators $N \in \mathcal{L}(Y_1, \Xi)$ and $M = M^* \in \mathcal{L}(\Xi, \Xi)$ such that

$$(\varphi(t, y_1) - \varphi(t, y_2), N(y_1, -y_2)) \equiv \geq (\varphi(t, y_1) - \varphi(t, y_2), M(\varphi(t, y_1) - \varphi(t, y_2))_{\Xi}, \forall t \in J, \forall y_1, y_2 \in Y_1.$$
(9)

(A4) There exists a quadratic form \mathcal{G} on $Y_0 \times \Xi$ and a continuous functional $\Phi : Y_0 \to \mathbb{R}_+$ such that for any $y_1(\cdot), y_2(\cdot) \in L^2_{loc}(J; Y_0)$ and a.a. $s, t \in J, s < t$, we have

$$\int_{s}^{t} \mathcal{G}(y_{1}(\tau) - y_{2}(\tau), \varphi(\tau, y_{1}(\tau)) - \varphi(\tau, y_{2}(\tau))) d\tau$$
$$\geq \frac{1}{2} \Phi(y_{1}(\tau) - y_{2}(\tau))|_{s}^{t}.$$
(10)

Furthermore, there are two constants $0 < \rho_1 < \rho_2$ such that

$$\rho_1 \|y\|_0^2 \le \Phi(y) \le \rho_2 \|y\|_0^2, \quad \forall y \in Y_0.$$
(11)

Suppose that there exists a number $\lambda > 0$ such that the following assumptions are satisfied:

(A5) For any T > 0 and any $f \in L^2(0, T; Y_{-1})$ the problem

$$\dot{y} = (A + \lambda I) y + f(t), y(0) = y_0,$$
 (12)

is well-posed, i.e., for arbitrary $y_0 \in Y_0$, $f(\cdot) \in L^2(0, T; Y_{-1})$ there exists a unique solution $y(\cdot) \in \mathcal{W}(0, T)$ with $\dot{y}(\cdot) \in L^2(0, T; Y_{-1})$ satisfying the equation in a variational sense and depending continuously on the initial data, i.e.,

$$\|y(\cdot)\|_{\mathcal{W}(0,T)}^2 \le c_1 \|y_0\|_0^2 + c_2 \|f(\cdot)\|_{2,-1}^2 , \qquad (13)$$

where $c_1 > 0$ and $c_2 > 0$ are some constants. Furthermore it is supposed that any solution of $\dot{y} = (A + \lambda I) y$, $y(0) = y_0$, is exponentially decreasing for $t \to +\infty$, i.e., there exist constants $c_3 > 0$ and $\varepsilon > 0$ such that

$$\|y(t)\|_{0} \leq c_{3} e^{-\varepsilon t} \|y_{0}\|_{0} , \ t > 0 .$$
(14)

(A6) The operator $A + \lambda I \in \mathcal{L}(Y_1, Y_{-1})$ is regular, i.e., for any $T > 0, y_0 \in Y_1, z_T \in Y_1$ and $f \in L^2(0, T; Y_0)$ the solution of the direct problem

$$\dot{y} = (A + \lambda I)y + f(t), \quad y(0) = y_0$$
 (15)

and of the dual problem

$$\dot{z} = -(A + \lambda I)^* z + f(t), \quad z(0) = z_T$$
 (16)

are strongly continuous in t in the norm of Y_1 .

(A7) The pair $(A + \lambda I, B)$ is L^2 -controllable, i.e., for arbitrary $y_0 \in Y_0$ there exists a control $\xi(\cdot) \in L^2(0, +\infty; \Xi)$ such that the problem $\dot{y} = (A + \lambda I)y + B\xi, y(0) = y_0$, is well-posed in the variational sense on $(0, +\infty)$.

(A8) Let denote by H^c and L^c the complexification of a linear space H and a linear operator L, respectively, by $\chi(s) = (sI^c - A^c)^{-1}B^c$, $s \notin \rho(A^c)$, the transfer operator, and by \mathcal{G}^c the Hermitian extension of \mathcal{G} .

There exist a number $\Theta > 0$ such that with ρ_2 from (11) and the imbedding constant γ from $Y_1 \subset Y_0$

$$\Theta \Big[\operatorname{Re}(\xi, N^{c}\chi(i\omega - \lambda)\xi)_{\equiv^{c}} + (\xi, M^{c}\xi)_{\equiv^{c}} \Big] \\ + \mathcal{G}^{c}(\chi(i\omega - \lambda)\xi, \xi) + \gamma\lambda\rho_{2} \|\chi(i\omega - \lambda)\xi\|_{Y_{1}^{c}}^{2} < 0, \\ \forall \omega \in \mathbb{R}, \forall \xi \in \Xi^{c}.$$
(17)

(A9) For any $y_0 \in Y_0$ there exist at least one solution $y(\cdot)$ of (8) on \mathbb{R}_+ with $y(0) = y_0$.

Uniqueness to the right and the continuous dependence of solutions on initial states:

a) If y_1, y_2 are two solutions of (8) on \mathbb{R}_+ and $y_1(t_0) = y_2(t_0)$ for some $t_0 \ge 0$ then $y_1(t) = y_2(t)$, $\forall t \ge t_0$.

b) If $y(\cdot, a_k)$, k = 1, 2, ..., are solutions of (8) with $y(t_0, a_k) = a_k$ on $J_0 = [t_0, t_1]$ or $J_0 = [t_1, t_0]$ and $a_k \to a$ for $k \to \infty$ in Y_0 then there exists a subsequence $k_n \to \infty$ with $y(\cdot, a_{k_n}) \to y$ for $n \to \infty$ in $C(J_0; Y_0)$ and y is a solution of (8) on J_0 with $y(t_0) = a$.

3. Existence of bounded solutions

Let $(E, \|\cdot\|_E)$ be a Banach space.

Denote by $C_b(\mathbb{R}; E) \subset C(\mathbb{R}; E)$ the subspace of bounded continuous functions with the norm $||f||_{C_b} = \sup_{t \in \mathbb{R}} ||f(t)||_E$.

The space $BS^2(\mathbb{R}; E)$ of *bounded* (with exponent 2) *in the sense* of Stepanov functions is the subspace of all functions f from $L^2_{loc}(\mathbb{R}; E)$ which have a finite norm

$$\|f\|_{S^2}^2 = \sup_{t \in \mathbb{R}} \int_t^{t+1} \|f(\tau)\|_E^2 d\tau .$$
 (18)

Theorem 3.1 Suppose that the assumptions (A3) – (A9) are satisfied and

$$f \in BS^2(\mathbb{R}_+; Y_{-1})$$
 (19)

Then any solution $y(\cdot)$ of (8) belongs to $C_b(\mathbb{R}_+; Y_0)$.

4. Existence of almost periodic solutions

Let $f : \mathbb{R} \to E$ be continuous. If $\varepsilon > 0$, then a number $T \in \mathbb{R}$ is called ε -almost period of f if $\sup_{t \in \mathbb{R}} ||f(t+T) - f(t)||_E \le \varepsilon$.

The function f is called *Bohr almost periodic* or *uniformly almost periodic* (shortly $f \in CAP(\mathbb{R}; E)$ or uniformly a.p.) if for each $\varepsilon > 0$ there is R > 0 such that each interval $(r, r + R) \subset \mathbb{R}$ $(r \in \mathbb{R})$ contains at least one ε -almost period of f.

For a function $f \in L^2_{loc}(\mathbb{R}; E)$ define the *Bochner transform* f^b by

$$f^{b}(t) := f(t + \eta) , \ \eta \in [0, 1] , \ t \in \mathbb{R} ,$$

as a (continuous) function with values in $L^2(0, 1; E)$.

A function $f \in BS^2(\mathbb{R}; E)$ is called an *almost periodic function in* the sense of Stepanov (shortly S^2 -a.p.) if $f^b \in CAP(\mathbb{R}; L^2(0, 1; E))$.

The space of S^2 -a.p. functions with values in E is denoted by $S^2(\mathbb{R}; E)$. Obviously, $CAP(\mathbb{R}; E) \subset S^2(\mathbb{R}; E)$.

(A10) The family of functions $\{\varphi(\cdot, y), y \in Y_1\}$ is uniformly almost periodic on any set $\{y \in Y_1 : \|y\|_1 \leq \text{const}\}$.

Theorem 4.1 Under the assumptions (A3) – (A9) there exists for any $f \in BS^2(\mathbb{R}; Y_{-1})$ a unique bounded on \mathbb{R} solution $y_*(\cdot)$ of (8). This solution is exponentially stable in the whole, i.e., there exist positive constants c > 0 and $\varepsilon > 0$ such that for any other solution y of (8), any $t_0 \in \mathbb{R}$ and any $t \ge t_0$ we have

$$\|y(t) - y_*(t)\|_0 \le c e^{-\varepsilon(t-t_0)} \|y(t_0) - y_*(t_0)\|_0.$$
 (20)

If φ satisfies (A10) and $f \in S^2(\mathbb{R}; Y_{-1})$ then $y_*(\cdot)$ belongs to CAP $(\mathbb{R}; Y_0)$.

5. Examples

Example 5.1

$$Y_0 = L^2(0, 1), \quad Y_1 = W^{1,2}(0, 1)$$
$$(u, v)_1 = \int_0^1 (uv + u_x v_x) \, dx \tag{21}$$

$$A: Y_1 \to Y_{-1}, (Au, v)_{-1,1} = \int_0^1 (Au)(x)v(x)dx := -\int_0^1 (au_x v_x + buv) dx, \forall u, v \in W^{1,2}(0, 1)$$
(22)

$$("Au = au - bu_x")$$

$$\equiv = \mathbb{R}, B : \equiv \to Y_{-1}, \qquad (23)$$

$$(B\xi, v)_{-1,1} := a\xi v(1), \quad \forall \xi \in \mathbb{R}, \forall v \in W^{1,2}(0, 1)$$

$$("B = a\delta(x-1)")$$

 $u_x(0,t) = 0, \quad u_x(1,t) = g(w(t)) + f(t),$ (24)

$$g : \mathbb{R} \to \mathbb{R} \quad \text{continuous, } f \in L^2_{\text{loc}}(\mathbb{R}) \cap \text{ CAP}(\mathbb{R})$$

$$K : Y_1 \to \mathbb{R} \quad \text{linear continuous, } K(u) = \int_0^1 k(x)u(x,t) \, dx \,,$$

$$\varphi : L^2(0,1) \to \mathbb{R} \quad \text{given by}$$

$$u \in L^2(0,1) \mapsto w(\cdot) = K(u(\cdot)) \mapsto g(w(\cdot)) \in \mathbb{R} \quad (25)$$

$$\exists \mu_0 > 0 \quad \forall w_1, w_2 : 0 \le (g(w_1) - g(w_2))(w_1 - w_2) \\ \le \mu_0 (w_1 - w_2)^2,$$
 (26)

$$\exists c_1 > 0 \quad \forall w_1, w_2 \in \mathcal{W}(0, T) \quad \forall s < t, \ s, t \in (0, T) :$$
$$\int_s^t (\dot{w}_1 - \dot{w}_2) \left(\varphi(w_1) - \varphi(w_2) \right) d\tau \ge c_1 |w_1(\tau) - w_2(\tau)|^2 |_s^t (27)$$

$$\chi(s) = K(\tilde{u}(x,s)), \ s \in \mathbb{C},$$

$$s\tilde{u} = a\tilde{u}_{xx} - b\tilde{u}, \ \tilde{u}_x(0,t) = 0, \ \tilde{u}_x(1,t) = 0$$
(28)

$$\chi(s) = K\left(\frac{ab \cosh(\frac{1}{a}\sqrt{s+bx})}{\sqrt{s+b}\sinh(\frac{1}{a}\sqrt{s+b}}\right)$$
(29)

$$\exists \Theta > 0 \quad \exists \varepsilon > 0 \quad \exists \lambda > 0 \quad \forall \omega \in \mathbb{R} :$$

$$\mu_0 \operatorname{Re} \chi(i\omega - \lambda) + \Theta \operatorname{Re} (i\omega\chi(i\omega - \alpha)) \ge \varepsilon , \qquad (30)$$

$$\exists m > 0 \quad \forall u \in W^{1,2}(0,1) : K(u) \ge m \|u\|_1^2$$
 (31)

 \Rightarrow assumptions of Theorem 4.1 are satisfied

Example 5.2

Consider the coupled system of Maxwell's equation and heat transfer equation

$$\begin{cases} \Psi_{tt} + \sigma(x,\theta)\Psi_t - \Psi_{xx} = 0\\ \theta_t - \theta_{xx} = \sigma(x,\theta)\Psi_t^2 \end{cases}$$
(32)

Initial-boundary conditions:

$$\Psi(0,t) = g_1(t) = \cos(t) + \cos(\sqrt[2]{t}), \quad \forall t \in [0,T]
\theta(0,t) = \theta(1,t) = 0, \quad \forall t \in [0,T]
\Psi(1,t) = g_2(t) = 0, \quad \forall t \in [0,T]
\Psi(x,0) = \Psi_0(x) = 2 - 2x, \quad \forall x \in \Omega
\Psi_t(x,0) = \Psi_1(x), \quad \forall x \in \Omega
\theta(x,0) = \theta_0(x), \quad \forall x \in \Omega$$
(33)

Here $\Omega = (0, 1)$.

Energy inequality:

$$\begin{split} \sup_{0 \le t \le T} \int_0^1 \left[\Psi_t^2 + \Psi_x^2 \right] dx &+ \int_0^T \int_0^1 \sigma(x, t, \theta) \Psi_t^2 dx dt \\ &\le C_1 + C_2 \int_0^T \int_0^1 |\theta| dx dt \,, \end{split}$$

where the constants C_1 and C_2 depend only on known data.

System in terms of operator equations in some function spaces:

$$y(x,t) = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} \Psi_t(x,t) \\ \Psi(x,t) \\ \theta(x,t) \end{pmatrix}, \quad (34)$$
$$\xi(x,t) = \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} \sigma(x,\theta)\Psi_t(x,t) \\ \sigma(x,\theta)\Psi_t^2(x,t) \end{pmatrix}.$$

Let us define operators A, B from equation (8). Let Λ be the selfadjoint positiv operator, generated on $L^2(0, 1)$ by the differential expression $\Lambda(v) = -v_{xx}$ and zero boundary conditions (33).

Consider the following spaces $Y_0 = L^2(0, 1) \times L^2(0, 1) \times L^2(0, 1)$, $Y_1 = W^{1,2}(0, 1) \times W^{1,2}(0, 1) \times W^{1,2}(0, 1)$ and $\Xi = L^2(0, 1) \times L^2(0, 1)$ as defined in Section 1.

Then operators A and B are defined as follows:

$$A = \begin{bmatrix} -\sigma_0 I & \Lambda & 0 \\ -I & 0 & 0 \\ 0 & 0 & -\Lambda \end{bmatrix}, B = \begin{bmatrix} -I & 0 \\ 0 & 0 \\ 0 & I \end{bmatrix}, \quad (35)$$

Here the constant $\sigma_0 > 0$ is derived from decomposition $\sigma(x, \theta) = \sigma_0 + \overline{\sigma}(x, \theta)$.

Finally, system (32) can be written in terms of the operator equation

$$\frac{dy}{dt} = Ay + B\xi \tag{36}$$

Consider the quadratic form $F(y,\xi)$ defined by

$$F(y,\xi) = y_1 \cdot \xi_1 = \Psi_t(x,t) \cdot \sigma(x,\theta) \Psi_t(x,t).$$
(37)

The pair (A, B) is L^2 – controllable since the matrix operator A is stable.

Suppose that $\{e_k\}_k$ forms a basis of $L^2(0, 1)$.

Verification of the frequency domain condition:

Functions $\Psi(x,t)$, $\theta(x,t)$, $\xi(x,t)$ can be decomposed by $\{e_k\}_k$ as follows:

$$\Psi(x,t) = \sum_{k} \Psi^{k}(t)e_{k}, \quad \theta(x,t) = \sum_{k} \theta^{k}(t)e_{k}, \quad (38)$$

$$\xi(x,t) = \sum_{k} \xi^{k}(t) e_{k}.$$
(39)

Introduce the quadratic form $(\Pi_0(i\omega)\xi,\xi) = \tilde{F}(y,\xi)$, where $\tilde{F}(y,\xi)$ is the extension of the quadratic form $F(y,\xi)$ to the Hermitian form (A3).

Then the matrix-function $\Pi_0(i\omega)$ can be presented as

$$(\Pi_0(i\omega)\tilde{\xi},\tilde{\xi}) = \sum_k (\Pi_0^k(i\omega)\tilde{\xi}^k,\tilde{\xi}^k).$$
(40)

Fourier transform with respect to *t*:

$$-\omega^{2}\widetilde{\Psi^{k}}(i\omega) + i\omega\sigma_{0}\widetilde{\Psi^{k}}(i\omega) - \lambda_{k}\widetilde{\Psi^{k}}(i\omega) + \widetilde{\xi_{1}^{k}}(i\omega) = 0$$

$$i\omega\widetilde{\theta^{k}}(i\omega) + \lambda_{k}\widetilde{\theta^{k}}(i\omega) - \widetilde{\xi_{2}^{k}}(i\omega) = 0$$
(41)

From (41) $\widetilde{\Psi^k}$ and $\widetilde{\theta^k}$ can be expressed in terms of $\widetilde{\xi_1^k}, \widetilde{\xi_2^k}$ in the following way:

$$\Psi^{k}(i\omega) = \chi_{0}(i\omega,\lambda_{k})\xi_{1}^{k}(i\omega),$$

$$\tilde{\theta}^{k}(i\omega) = \chi_{1}(i\omega,\lambda_{k})\xi_{2}^{k}(i\omega),$$

where

$$\chi_0(i\omega,\lambda_k) = (\omega^2 - i\omega\sigma_0 + \lambda_k)^{-1}, \chi_1(i\omega,\lambda_k) = (i\omega + \lambda_k)^{-1}.$$

 $(\Pi_0^k(i\omega)\widetilde{\xi^k},\widetilde{\xi^k})$ from (40) can be written as follows:

$$(\Pi_0^k(i\omega)\widetilde{\xi^k},\overline{\widetilde{\xi^k}})) = \operatorname{Re}\widetilde{\Psi_t^k} \,\overline{\widetilde{\xi_1^k}} = \operatorname{Re}(i\omega\chi_0)|\widetilde{\xi_1^k}(i\omega)|^2$$

Here the matrix $\Pi_0^k(i\omega)$ has the following form

$$\Pi_0^k(i\omega) = \begin{pmatrix} \operatorname{Re}(i\omega\chi_0) & 0\\ 0 & 0 \end{pmatrix}$$
(42)

We have to check that

$$\operatorname{Re}(i\omega\chi_0) < 0, \forall \omega \in \mathbb{R}, \omega \neq 0$$
Condition (43) is equivalent to
$$\operatorname{Re}(\frac{i\omega}{\omega^2 - i\omega\sigma_0 + \lambda_k}) < 0.$$
(43)

This is satisfied if $-\omega^2 \sigma_0 < 0, \forall \omega \neq 0$.

6. Numerical results

Consider system (32) - (33) in the form

$$\begin{cases} h_t + \sigma(x,\theta)h - \Psi_{xx} = 0\\ \Psi_t = h\\ \theta_t - \theta_{xx} = \sigma(x,\theta)h^2 \end{cases}$$
(44)

(S) Initial-boundary conditions (without perturbations):

$$\Psi(0,t) = \theta(0,t) = 0,
\Psi(1,t) = \theta(1,t) = 0 \quad \forall t \in [0,T]
\Psi(x,0) = \Psi_0(x), h(x,0) = h_0(x), \theta(x,0) = \theta_0(x), \forall x \in \Omega$$
(45)

 $h_0(x) = p \cdot (1 - |2x - 1|), \Psi_0(x) \equiv 0, \theta_0(x) = p \cdot (1 - |2x - 1|),$ where $p \in \mathbb{R}$ is some parameter.

J. Morgan, H.-M. Yin, 2001

Electrical conductivity: $\sigma(x,\theta) = c + \theta(x,t)$, where c is some positive constant.

For convention: Denote h(x, t) by $\Psi_t(x, t)$.

Consider solutions $(\Psi_t^p(x,t), \Psi^p(x,t), \theta^p(x,t))$ with $p \in [-0.5, 0.5]$.

 $\theta^p(x_0, t), x_0 = 0.5, t \in (0, 0.25)$

 $\theta^p(x,t), t \in (0, 0.25), p = 0.5$

 $\Psi^p(x_0,t), x_0 = 0.5, t \in (0, 200)$

 $\Psi^p(x,t), t \in (0, 200), p = 0.5$

$$\Psi_t^p(x_0,t), x_0 = 0.5, t \in (0,200)$$

 $\Psi_t^p(x,t), t \in (0, 200), p = 0.5$

(P) Initial-boundary conditions (with almost-periodic perturbations):

$$\Psi(x,0) = 2 - 2x; h(x,0) = 0; \theta(x,0) = 0; \Psi(0,t) = g_1(t) = \cos(t) + \cos(\sqrt{2}t); \Psi(1,t) = g_2(t) = 0; \theta(0,t) = \theta(1,t) = 0;$$

 $\theta(x,t), \theta_0 = 0, t \in (0, 50).$

(**P2**)

 $\theta(x,t), \theta_0 = 0, t \in (0, 10).$

 $\Psi(x,t), \Psi_0 = 1, t \in (0, 10).$

 $h(x,t), h_0 = 0, t \in (0, 10).$

 $\theta(x,t), \theta_0 \in (-0.5, 0.5), t \in (0, 1).$

(**P6**)

 $\Psi(x,t), \Psi_0 \in (1-0.5, 1+0.5), t \in (0,5).$

 $h(x,t), h_0 \in (-0.5, 0.5), t \in (0, 50).$

References

[1] V. Reitmann and H. Kantz, *Frequency domain conditions for the existence of almost periodic solutions in evolutionary variational inequalities.* Stochastics and Dynamics, 4 (3), 483 – 499, 2004.

[2] V. Reitmann, *Convergence in evolutionary variational inequalities with hysteresis nonlinearities.* In: Proc. of Equadiff 11, Bratislava, Slovakia, 2005.

[3] V. Reitmann, *Realization theory methods for the stability investigation of nonlinear infinite-dimensional input-output systems.* In: Proc of Equadiff 12, Brno, Czech, 2009, Mathematica Bohemica, 2010.

[4] G.A. Leonov, and V. Reitmann, Absolute observation stability for evolutionary variational inequalities. World Scientific Publishing Co., Scientific Series on Nonlinear Science, Series B, Vol.14, 2010.