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1. Introduction

Suppose: Y0 a real Hilbert space, (·, ·)0 and ‖ · ‖0 the scalar pro-
duct resp. the norm on Y0,
A : D(A)→ Y0 the generator of a C0-semigroup on
Y0, Y1 := D(A).
For fixed β ∈ ρ (A) ∩ R for any y, η ∈ Y1 define

(y, η)1 := ((βI −A)y, (βI −A)η)0 . (1)

Y−1 is the completion of Y0 with respect to the norm,
‖y‖−1 := ‖(βI −A)−1y‖0 is the scalar product

(y, η)−1 :=
(

(βI −A)−1y, (βI −A)−1η
)

0
, ∀ y, η ∈ Y−1.

(2)

Y1 ⊂ Y0 ⊂ Y−1 is a continuous embedding, i.e., for α = 1,0,
Yα ⊂ Yα−1 , ‖y‖α−1 ≤ c‖y‖α , ∀ y ∈ Yα.

(Y1, Y0, Y−1) is called a Gelfand triple.
For any y ∈ Y0 and z ∈ Y1 we have

|(y, z)0| = |(βI −A)−1y, ((βI −A)z)0| ≤ ‖y‖−1‖z‖1 . (3)

Extend (·, z)0 by continuity onto Y−1

|(y, z)0| ≤ ‖y‖−1‖z‖1 , ∀ y ∈ Y−1,∀ z ∈ Y1.

Denote this extension also by (·, ·)−1,1.
Consider the Bochner measurable functions in

L2(0, T ;Yj) (j = 1,0,−1)

‖y(·)‖2,j :=
(

T
∫

0

‖y(t)‖2j dt
)1/2

. (4)

LT is the space of functions y ∈ L2(0, T ;Y1), s.th. ẏ ∈ L2(0, T ;Y−1).
LT is equipped with the norm

‖y‖LT
:=
(

‖y(·)‖22,1+ ‖ẏ(·)‖22,−1
)1/2

. (5)



2. Evolutionary variational inequalities

Take T > 0 arbitrary and consider for a.a. t ∈ [0, T ] the evolution-
ary variational inequality

(ẏ −Ay −Bξ − f(t), η − y)−1,1 (6)
+ψ(η)− ψ(y) ≥ 0 , ∀ η ∈ Y1
y(0) = y0 ∈ Y0 ,

w(t) = Cy(t) , ξ(t) ∈ ϕ(t, w(t)) , (7)

ξ(0) = ξ0 ∈ E(y0) ,
z(t) = Dy(t) + E ξ(t) . (8)

C ∈ L(Y−1,W ), D ∈ L(Y1, Z) and E ∈ L(Ξ, Z),
Ξ,W and Z are real Hilbert spaces, Y1 ⊂ Y0 ⊂ Y−1 is a real
Gelfand triple and A ∈ L(Y0, Y−1), B ∈ L(Ξ, Y−1), ϕ : R+ ×
W → 2Ξ is a set-valued map, ψ : Y1 → R+ and f : R+ → Y−1
are nonlinear maps.

Denote by ‖ · ‖Ξ, ‖ · ‖W , ‖ · ‖Z the norm in Ξ,W resp. Z .

(N)
(ẏ−Ay−Bξ, y−η)−1,1+Ψ(η)−Ψ(y) ≥ 0

y(0) = y0 , ∀η ∈ Y1

y

(L)
w(t)=Cy(t)

ξ w

(N)
ξ(t)∈ϕ(t,w(t))

ξ y

(L)
z(t)=Dy(t)+Eξ(t)

z

Fig. 1 State / linear output / nonlinear output / observation diagram



Definition 1 Any pair of functions {y (·), ξ(·)} with y ∈ LT and
ξ ∈ L2loc(0,∞;Ξ) such that Bξ ∈ LT , satisfying (6), (7) almost
everywhere on (0, T ) , is called solution of the Cauchy problem
y (0) = y0, ξ(0) = ξ0 defined for (6), (7) .

Assumptions:

(C1) The Cauchy-problem (6), (7) has for arbitrary y0 ∈ Y0 and
ξ0 ∈ E(y0) ⊂ Ξ at least one solution {y (·), ξ(·)}.

(C2) a) The nonlinearity ϕ : R+×W → Ξ is a function having the
property that A(t) := −A − Bϕ(t, C·) : Y1 → Y−1 is a family of
monotone hemicontinuous operators such that the inequality

‖A(t)y‖−1 ≤ c1‖y‖1+ c2 , ∀ y ∈ Y1 ,

is satisfied, where c1 > 0 and c2 ∈ R are constants not depending
on t ∈ [0, T ] .
For any y ∈ Y1 and for any bounded set U ⊂ Y1 the family of
functions {(A(t)η, y)−1,1 , η ∈ U} is equicontinuous with respect
to t on any compact subinterval of R+.
b) ψ is a proper, convex, and semicontinuous from below function
on D(ψ) ⊂ Y1.

(C3) f ∈ L2loc(R+;Y−1).

(C4) Consider only solutions y of (6),(7) for which ẏ belongs to
L2loc(R;Y−1).

Remark 1 When ψ ≡ 0 in (6) the evolutionary variational inequality
is equivalent for a.a. t ∈ [0, T ] to the equation

ẏ = Ay+Bξ+ f(t) in Y−1 ,
y(0) = Y0 , w(t) = Cy(t) , ξ(t) ∈ ϕ(t, w(t)) ,

ξ(0) ∈ E(y0) ,
z(t) = Dy(t) + Eξ(t).
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Generalized play operator Play (model of plasticity with strain-hardening)

Definition 2 a) Suppose F and G are quadratic forms on Y1 ×Ξ.
The class of nonlinearities N (F,G) defined by F andG consists
of all maps ϕ : R+ ×W → 2Ξ such that for any
y(·) ∈ L2loc(0,∞;Y1) with ẏ(·) ∈ L2loc(0,∞;Y−1) and any

ξ(·) ∈ L2loc(0,∞;Ξ) with ξ(t) ∈ ϕ(t, Cy(t)) for a.e. t ≥ 0, it
follows that F (y(t), ξ(t)) ≥ 0 for a.e. t ≥ 0 and (for any such pair
{y, ξ}) there exists a continuous functional Φ : W → R such that
for any times 0 ≤ s < t we have
t
∫

s

G(y(τ), ξ(τ))dτ ≥ Φ(Cy(t))−Φ(Cy(s)) .

b) The class of functionals M(d) defined by a constant
d > 0 consists of all maps ψ : Y1 → R+ such that for any
y ∈ L2loc(0,∞;Y0) with ẏ ∈ L2loc(0,∞;Y1) the function

t 7→ ψ(y(t)) belongs to L1(0,∞;R) satisfying

∞
∫

0

ψ(y(t))dt ≤ d

and for any ϕ ∈ N (F,G) and any ψ ∈ M(d) the Cauchy-problem
(6) − (8) has a solution {y(·), ξ(·)} on any time interval [0, T ].



3. Further assumptions

(F1) A ∈ L(Y1, Y−1) is regular, i.e., for any T > 0, y0 ∈ Y1,
ψT ∈ Y1 and f ∈ L2(0, T ;Y0) the solutions of the direct problem

ẏ = Ay+ f(t) , y(0) = y0 , a.a. t ∈ [0, T ]
and of the dual problem

ψ̇ = −A∗ψ+ f(t) , ψ(T ) = ψT , a.a. t ∈ [0, T ]
are strongly continuous in t in the norm of Y1.
A∗ ∈ L(Y−1, Y0) denotes the adjoint to A, i.e.,
(Ay, η)−1,1 = (y,A∗η)−1,1 , ∀ y, η ∈ Y1 .

(F2) The pair (A,B) is L2-controllable, i.e., for arbitrary y0 ∈ Y0
exists a control ξ(·) ∈ L2(0,∞;Ξ) such that the problem

ẏ = Ay+Bξ , y(0) = y0

is well-posed on the semiaxis [0,+∞) , i.e., there exists a solution
y(·) ∈ L∞ with y (0) = y0 .

(F3) F (y, ξ) is an Hermitian form on Y1 ×Ξ , i.e.,

F (y, ξ) = (F1y, y)−1,1+2Re (F2y, ξ)Ξ+ (F3 ξ, ξ)Ξ,

where

F1 = F ∗
1 ∈ L(Y1, Y−1) , F2 ∈ L(Y0,Ξ) , F3 = F ∗

3 ∈ L(Ξ,Ξ) .
Define the frequency-domain condition [Likhtarnikov and Yakubovich,
1976]

α := sup
ω,y,ξ
(‖y‖21+ ‖ξ‖2Ξ)−1F (y, ξ) ,

where the supremum is taken over all triples
(ω, y, ξ) ∈ R+ × Y1 ×Ξ such that iωy = Ay+Bξ .



4. Absolute observation - stability of evolutionary inequalities

For a function z(·) ∈ L2 (R+;Z) we denote their norm by

‖z(·)‖2,Z :=
(
∫ ∞

0

‖z(t)‖2Z dt
)1/2

.

Definition 3 a) The inequality (6), (7) is said to be absolutely di-
chotomic (i.e., in the classes N (F,G),M(d)) with respect to
the observation z from (8) if for any solution {y(·), ξ(·)} of (6), (7)
with y(0) = y0, ξ(0) = ξ0 ∈ E(y0) the following is true: Either
y(·) is unbounded on [0,∞) in the Y0-norm or y(·) is bounded in
Y0 in this norm and there exist constants c1 and c2 (which depend
only on A,B,N (F,G) and M(d)) such that

‖Dy(·) + Eξ(·)‖22,Z ≤ c1(‖y0‖20+ c2) . (9)

b) The inequality (6), (7) is said to be absolutely stable with re-
spect to the observation z from (8) if (9) holds for any solution
{y(·), ξ(·)} of (6), (7).

Definition 4 The inequality (6)−(8) with f ≡ 0 is said to be mini-
mally stable if the resulting equation for ψ ≡ 0 is minimally stable,
i.e., there exists a bounded linear operator K : Y1 → Ξ such that
the operator A+BK is stable, i.e. for some ε > 0

σ(A+BK) ⊂ {s ∈ C : Re s ≤ −ε < 0}
with F (y,Ky) ≥ 0 , ∀ y ∈ Y1 , (10)

and

t
∫

s

G(y(τ) , Ky(τ))dτ ≥ 0 ,

∀ s, t : 0 ≤ s < t , ∀ y ∈ L2loc(R+;Y1) . (11)



Theorem 1 Consider the evolution problem (6) − (8) with
ϕ ∈ N (F,G) and ψ ∈ M(d). Suppose that for the operators
Ac, Bc the assumptions (F1) and (F2) are satisfied. Suppose also
that there exist an α > 0 such that with the transfer operator

χ(z)(s) = Dc(sIc −Ac)−1Bc+ Ec (s 6∈ σ(Ac)) (12)

the frequency-domain condition

F c ((iωIc −Ac)−1Bcξ, ξ)

+ Gc ((iωIc −Ac)−1Bcξ, ξ) ≤ −α‖χ(z)(iω)ξ‖2Zc

∀ ω ∈ R : iω 6∈ σ(Ac) , ∀ ξ ∈ Ξc

is satisfied and the functional

J(y(·), ξ(·)) :=
∞
∫

0

[F c(y(τ), ξ(τ)) +Gc(y(τ), ξ(τ))

+ α‖Dcy(τ) + Ecξ(τ)‖2Zc

]

dτ

is bounded from above on any set

My0
:= {y(·), ξ(·) : ẏ = Ay+Bξ on R+,

y(0) = y0 , y(·) ∈ L∞ , ξ(·) ∈ L2(0,∞;Ξ)} .
Suppose further that the inequality (6)−(8) with f ≡ 0 is minimally
stable, i.e., (10) and (11) are satisfied with some operator K ∈
L(Y1,Ξ) and that the pair (A+ BK,D + EK) is observable in
the sense of Kalman, i.e., for any solution y(·) of

ẏ = (A+BK)y , y(0) = y0 ,

with z(t) = (D + EK)y (t) = 0 for a.a. t ≥ 0 it follows that
y(0) = y0 = 0 .
Then inequality (6), (7) is absolutely stable with respect to the ob-
servation z from (8).

Proof: Reitmann, V. and H. Kantz, Observation stability of con-
trolled evolutionary variational inequalities. Preprint-Series DFG-
SPP 1114, Preprint 21, Bremen, 2003.



5. Application of observation stability to the beam equation

Consider the equation of a beam of length l, with damping and
Hookean material, given as

ρA
∂2u

∂t2
+ γ

∂u

∂t
− ∂

∂x

(

EA

3
g̃

(

∂u

∂x

))

= 0 , (13)

u(0, t) = u(l, t) = 0 for t > 0 , (14)

u(x,0) = u0(x) , ut(x,0) = u1(x) for x ∈ (0, l) . (15)

Here u is the deformation in the x direction. Assume that the cross
section area A, the viscose damping γ, the mass density ρ and the
generalized modulus of elasticity E are constant. The nonlinear
stress-strain law g̃, is given by

g̃(w) = 1+ w − (1 + w)−2 , w ∈ (−1,1) . (16)

Assume that g̃(w) = g(w) + w .

ρA
∂ 2u

∂t2
− ∂

∂x

(

EA

3

∂u

∂x

)

+ γ
∂u

∂t
− ∂

∂x

(

EA

3
g

(

∂u

∂x

))

= 0 .

(17)

Assume also that V1 ⊂ V0 ⊂ V−1 is a Gelfand triple with

V0 := L2(0, l) , V1 := H1
0(0, l) and V−1 := H−1(0, l) . (18)

Then equation (13) − (15) can be rewritten in V−1 as

ρAutt+A1u+A2ut+ C∗g(Cu) = 0 , (19)

u(0) = u0 , ut(0) = u1 , (20)

with A1 ∈ L(V1,V−1) , A2 ∈ L(V1,V−1) (strong damping),
C ∈ L(V1,V0) and g : V0 → V0. The operators A1 and A2 are
associated with their bilinear forms ai : V1 × V1 → R (i = 1,2)
through (Aiv, w)V−1,V1

= ai(v, w) , ∀ v, w ∈ V0 .



Assumptions:

(A1) a) The form a1 is symmetric on V0 × V;
b) a1 is V1 continuous, i.e., for some c1 > 0 holds

|a1(v, w)| ≤ c1‖v‖V1
‖w‖V1

, ∀ v, w ∈ V1 ;
c) a1 is strictly V1-elliptic, i.e., for some k1 > 0 holds

a1(v, v) ≥ k1‖v‖2V1
, ∀ v ∈ V1 .

(A2) a) The form a2 is V1 continuous, i.e., for some c2 > 0
holds |a2(v, w)| ≤ c2‖v‖V1

‖w‖V1
, ∀ v, w ∈ V1 .

b) The form a2 is V1 coercive and symmetric, i.e., there
are k2 > 0 and λ0 ≥ 0 s.t.

a2(v, v) + λ0‖v‖2V0
≥ k2‖v‖2V1

and

a2(v, w) = a2(w, v) , ∀ v, w ∈ V1 .

(A3) a) The operator C ∈ L(V1,V0) satisfies with some
k ≥ 0 the inequality

‖Cv‖V0
≤

√
k‖v‖V1

, ∀ v ∈ V1 .
g : V0 → V0 is continuous and ‖g(v)‖V0

≤ c1‖v‖V0
+

c2 for v ∈ V0 , where c1 and c2 are nonnegative con-
stants.

b) g is of gradient type, i.e., there exists a coninuous
Frechét-differentiable functional G : V0 → R, whose
Frechét derivative G

′
(v) ∈ L(V0 ,R) at any v ∈ V0

can be represented in the form

G
′
(v)w = (g(v), w)V0

, ∀w ∈ V0 .

c) g(0) = 0 and for some positive ε < 1 we have for all
v, w ∈ V0
(g(v)− g(w), v − w)V0

≥ −εk1k−1‖v − w‖2V0
.
(21)



Definition 5 We say that u ∈ LT is a weak solution of (19), (20) if

(utt, η)V−1,V1
+ a1 (u, η) + a2 (ut, η) + (g(Cu), Cu)0 = 0 (22)

∀ η ∈ LT , a.a. t ∈ [0, T ] .

Introduce Y0 := V1×V0 in the coordinates y = (y1, y2) = (u, ut).
Define for this Y1 := V1 × V1 and a : Y1 × Y1 → R by

a((v1, v2), (w1, w2)) = (v2, w1)V1
− a1(v1, w2)− a2(v2, w2) ,

∀ (v1, v2), (w1, w2) ∈ Y1 × Y1 .
(23)

The norms in the product spaces Y0 and Y1 are

‖(y1, y2)‖20 := ‖y1‖2V1
+ ‖y2‖2V0

, (y1, y2) ∈ Y0 ,

and

‖(y1, y2)‖21 := ‖y1‖2V1
+ ‖y2‖2V1

, (y1, y2) ∈ Y1 .

Then (22) can be rewritten as

(ẏ, η)−1,1 − a(y, η) = (Bϕ(Cy), η)−1,1 , y(0) = (u0, u1) ,

∀ η ∈ Y1 ,
(24)

where Bϕ(Cy) :=

(

0
−C∗g (Cy1)

)

, (25)

ẏ = Ay+Bϕ (Cy), y(0) = y0 , (26)

a(v, w) = (Av,w)−1,1 , ∀ v, w ∈ Y1 , i.e.,A =

[

0 I
−A1 −A2

]

.

Y1 ⊂ Y0 is completely continuous, A generates an analytic semi-
group on Y1, Y0 and Y−1 = V1 × V−1 .



The semigroup is exponentially stable on Y1, Y0 and Y−1 , the pair
(A,B) is exponentially stabilizable.
Consider with parameters ε > 0 and α ∈ R

∂2u

∂t2
+2ε

∂u

∂t
− α

∂2u

∂x2
= −α

(

∂

∂x

(

−g
(

∂u

∂x

)))

=: α
∂

∂x
ξ ,

(27)

the boundary and initial conditions (14), (15), where ξ = −g = ϕ
is introduced as new nonlinearity.
Assume that ϕ ∈ N (F ), with the quadratic form F (w, ξ) =
µw2 − ξw on R × R , where µ > 0 is a certain parameter.
λk > 0 and ek (k = 1,2, . . .) are the eigenvalues resp. eigen-
functions of the operator −∆ with zero boundary conditions.
Write formally the Fourier series of the solution u(x, t) and the
perturbation ξ (x, t) to the (linear) equation (27) as

u (x, t) =

∞
∑

k=1

uk(t)ek and ξ (x, t) =

∞
∑

k=1

ξk(t)ek . (28)

Introduce the Fourier transforms ũ and ξ̃ of (28) with respect to the
time variable. From (27) for k = 1,2, . . . it follows that

−ω2ũk (iω) + 2iωεũk (iω) + λkũ
k(iω) = −α

√

λk ξ̃
k (iω) ,

(29)

ũk = χ (iω, λk) ξ̃
k , (30)

χ (iω, λk) = (−ω2+2iωε+ αλk)
−1 (αλk) ,

∀ ω ∈ R : −ω2+2iωε+ αλk 6= 0 . (31)

Consider the functional

J(w, ξ) := Re

∫ ∞

0

∫ l

0

(µ|w|2 − wξ∗) dxdt . (32)



The Parseval equality for (32) gives

|w̃|2 =
∞
∑

k=1

λk|ũk|2 =
∞
∑

k=1

λk|ũk|2 =
∞
∑

k=1

λk|χ(iω, λk)|2|ξ̃k|2

and w̃ ξ̃∗ =
∞
∑

k=1

√

λk ũ
k (ξ̃ k)∗ =

∞
∑

k=1

√

λk χ (iω, λk)|ξ̃k|2 .

Then [Arov and Yakubovich, 1982] the functional (32) is bounded
from above if and only if the functional

Re

∫ +∞

−∞

∫ l

0

[µ

( ∞
∑

k=1

λk|χ(iω, λk)|2|ξ̃k|2

−
∞
∑

k=1

√

λk χ (iω, λk)|ξ̃k|2
)

]dxdω (33)

is bounded on the subspace of Fourier-transforms from (30), (31)
or the frequency-domain condition

µλk|χ (iω, λk)|2 −
√

λk Reχ(iω, λk) < 0 , (34)

∀ω ∈ R : −ω2+2 iωε+ αλk 6= 0 , k = 1,2, . . . ,

is satisfied, where χ (iω, λk) = (−ω2+2iωε+αλk)−1(−α
√
λk) .


