Absolute observation stability for evolutionary variational inequalities

G.A. Leonov and V. Reitmann *

Saint-Petersburg State University, Russia Department of Mathematics and Mechanics

6th EUROMECH Conference ENOC 2008 June 30 - July 4, 2008, Saint-Petersburg, RUSSIA

[^0]
1. Introduction

Suppose: Y_{0} a real Hilbert space, $(\cdot, \cdot)_{0}$ and $\|\cdot\|_{0}$ the scalar product resp. the norm on Y_{0},
$A: \mathcal{D}(A) \rightarrow Y_{0}$ the generator of a C_{0}-semigroup on $Y_{0}, Y_{1}:=\mathcal{D}(A)$.
For fixed $\beta \in \rho(A) \cap \mathbb{R}$ for any $y, \eta \in Y_{1}$ define

$$
\begin{equation*}
(y, \eta)_{1}:=((\beta I-A) y,(\beta I-A) \eta)_{0} \tag{1}
\end{equation*}
$$

Y_{-1} is the completion of Y_{0} with respect to the norm, $\|y\|_{-1}:=\left\|(\beta I-A)^{-1} y\right\|_{0} \quad$ is the scalar product

$$
\begin{equation*}
(y, \eta)_{-1}:=\left((\beta I-A)^{-1} y,(\beta I-A)^{-1} \eta\right)_{0}, \quad \forall y, \eta \in Y_{-1} \tag{2}
\end{equation*}
$$

$Y_{1} \subset Y_{0} \subset Y_{-1}$ is a continuous embedding, i.e., for $\alpha=1,0$, $Y_{\alpha} \subset Y_{\alpha-1},\|y\|_{\alpha-1} \leq c\|y\|_{\alpha}, \forall y \in Y_{\alpha}$.
(Y_{1}, Y_{0}, Y_{-1}) is called a Gelfand triple.
For any $y \in Y_{0}$ and $z \in Y_{1}$ we have

$$
\begin{equation*}
\left|(y, z)_{0}\right|=\left|(\beta I-A)^{-1} y,((\beta I-A) z)_{0}\right| \leq\|y\|_{-1}\|z\|_{1} \tag{3}
\end{equation*}
$$

Extend $(\cdot, z)_{0}$ by continuity onto Y_{-1}

$$
\left|(y, z)_{0}\right| \leq\|y\|_{-1}\|z\|_{1}, \quad \forall y \in Y_{-1}, \forall z \in Y_{1} .
$$

Denote this extension also by $(\cdot, \cdot)_{-1,1}$.
Consider the Bochner measurable functions in

$$
L^{2}\left(0, T ; Y_{j}\right) \quad(j=1,0,-1)
$$

$$
\begin{equation*}
\|y(\cdot)\|_{2, j}:=\left(\int_{0}^{T}\|y(t)\|_{j}^{2} d t\right)^{1 / 2} \tag{4}
\end{equation*}
$$

\mathcal{L}_{T} is the space of functions $y \in L^{2}\left(0, T ; Y_{1}\right)$, s.th. $\dot{y} \in L^{2}\left(0, T ; Y_{-1}\right)$. \mathcal{L}_{T} is equipped with the norm

$$
\begin{equation*}
\|y\|_{\mathcal{L}_{T}}:=\left(\|y(\cdot)\|_{2,1}^{2}+\|\dot{y}(\cdot)\|_{2,-1}^{2}\right)^{1 / 2} \tag{5}
\end{equation*}
$$

2. Evolutionary variational inequalities

Take $T>0$ arbitrary and consider for a.a. $t \in[0, T]$ the evolutionary variational inequality

$$
\begin{align*}
& (\dot{y}-A y-B \xi-f(t), \eta-y)_{-1,1} \tag{6}\\
& +\psi(\eta)-\psi(y) \geq 0, \quad \forall \eta \in Y_{1} \\
& y(0)=y_{0} \in Y_{0}, \tag{7}\\
& w(t)=C y(t), \quad \xi(t) \in \varphi(t, w(t)), \\
& \xi(0)=\xi_{0} \in \mathcal{E}\left(y_{0}\right) \tag{8}\\
& z(t)=D y(t)+E \xi(t) .
\end{align*}
$$

$C \in \mathcal{L}\left(Y_{-1}, W\right), D \in \mathcal{L}\left(Y_{1}, Z\right)$ and $E \in \mathcal{L}(\equiv, Z)$,
三, W and Z are real Hilbert spaces, $Y_{1} \subset Y_{0} \subset Y_{-1}$ is a real Gelfand triple and $A \in \mathcal{L}\left(Y_{0}, Y_{-1}\right), B \in \mathcal{L}\left(\equiv, Y_{-1}\right), \varphi: \mathbb{R}_{+} \times$ $W \rightarrow 2^{\equiv}$ is a set-valued map, $\psi: Y_{1} \rightarrow \mathbb{R}_{+}$and $f: \mathbb{R}_{+} \rightarrow Y_{-1}$ are nonlinear maps.
Denote by $\|\cdot\|_{\equiv,}\|\cdot\|_{W},\|\cdot\|_{Z}$ the norm in \equiv, W resp. Z.

Fig. 1 State / linear output / nonlinear output / observation diagram

Definition 1 Any pair of functions $\{y(\cdot), \xi(\cdot)\}$ with $y \in \mathcal{L}_{T}$ and $\xi \in L_{\text {loc }}^{2}\left(0, \infty ;\right.$) such that $B \xi \in \mathcal{L}_{T}$, satisfying (6), (7) almost everywhere on ($0, T$), is called solution of the Cauchy problem $y(0)=y_{0}, \xi(0)=\xi_{0}$ defined for (6), (7) .

Assumptions:

(C1) The Cauchy-problem (6), (7) has for arbitrary $y_{0} \in Y_{0}$ and $\xi_{0} \in \mathcal{E}\left(y_{0}\right) \subset$ 三 at least one solution $\{y(\cdot), \xi(\cdot)\}$.
(C2) a) The nonlinearity $\varphi: \mathbb{R}_{+} \times W \rightarrow$ 三 is a function having the property that $\mathcal{A}(t):=-A-B \varphi(t, C \cdot): Y_{1} \rightarrow Y_{-1}$ is a family of monotone hemicontinuous operators such that the inequality

$$
\|\mathcal{A}(t) y\|_{-1} \leq c_{1}\|y\|_{1}+c_{2}, \quad \forall y \in Y_{1}
$$

is satisfied, where $c_{1}>0$ and $c_{2} \in \mathbb{R}$ are constants not depending on $t \in[0, T]$.
For any $y \in Y_{1}$ and for any bounded set $U \subset Y_{1}$ the family of functions $\left\{(\mathcal{A}(t) \eta, y)_{-1,1}, \eta \in U\right\}$ is equicontinuous with respect to t on any compact subinterval of \mathbb{R}_{+}.
b) ψ is a proper, convex, and semicontinuous from below function on $\mathcal{D}(\psi) \subset Y_{1}$.
(C3) $f \in L_{\text {loc }}^{2}\left(\mathbb{R}_{+} ; Y_{-1}\right)$.
(C4) Consider only solutions y of (6),(7) for which \dot{y} belongs to $L_{\text {loc }}^{2}\left(\mathbb{R} ; Y_{-1}\right)$.

Remark 1 When $\psi \equiv 0$ in (6) the evolutionary variational inequality is equivalent for a.a. $t \in[0, T]$ to the equation

$$
\begin{aligned}
& \dot{y}=A y+B \xi+f(t) \quad \text { in } Y_{-1}, \\
& y(0)=Y_{0}, w(t)=C y(t), \quad \xi(t) \in \varphi(t, w(t)), \\
& z(t)=D y(t)+E \xi(t) .
\end{aligned}
$$

Fig. 2
Generalized play operator

Fig. 3
Play (model of plasticity with strain-hardening)

Definition 2 a) Suppose F and G are quadratic forms on $Y_{1} \times$ 三. The class of nonlinearities $\mathcal{N}(F, G)$ defined by F and G consists of all maps $\varphi: \mathbb{R}_{+} \times W \rightarrow 2 \equiv$ such that for any
$y(\cdot) \in L_{\text {loc }}^{2}\left(0, \infty ; Y_{1}\right)$ with $\dot{y}(\cdot) \in L_{\text {loc }}^{2}\left(0, \infty ; Y_{-1}\right)$ and any
$\xi(\cdot) \in L_{\text {loc }}^{2}(0, \infty ;$ 三) with $\xi(t) \in \varphi(t, C y(t))$ for a.e. $t \geq 0$, it follows that $F(y(t), \xi(t)) \geq 0$ for a.e. $t \geq 0$ and (for any such pair $\{y, \xi\})$ there exists a continuous functional $\Phi: W \rightarrow \mathbb{R}$ such that for any times $0 \leq s<t$ we have
$\int^{t} G(y(\tau), \xi(\tau)) d \tau \geq \Phi(C y(t))-\Phi(C y(s))$.
b) The class of functionals $\mathcal{M}(d)$ defined by a constant
$d>0$ consists of all maps $\psi: Y_{1} \rightarrow \mathbb{R}_{+}$such that for any $y \in L_{\text {loc }}^{2}\left(0, \infty ; Y_{0}\right)$ with $\dot{y} \in L_{\text {loc }}^{2}\left(0, \infty ; Y_{1}\right)$ the function
$t \mapsto \psi(y(t))$ belongs to $L^{1}(0, \infty ; \mathbb{R})$ satisfying $\int_{0}^{\infty} \psi(y(t)) d t \leq d$ and for any $\varphi \in \mathcal{N}(F, G)$ and any $\psi \in \mathcal{M}(d)$ the Cauchy-problem (6) - (8) has a solution $\{y(\cdot), \xi(\cdot)\}$ on any time interval $[0, T]$.

3．Further assumptions

（F1）$A \in \mathcal{L}\left(Y_{1}, Y_{-1}\right)$ is regular，i．e．，for any $T>0, y_{0} \in Y_{1}$ ， $\psi_{T} \in Y_{1}$ and $f \in L^{2}\left(0, T ; Y_{0}\right)$ the solutions of the direct problem

$$
\dot{y}=A y+f(t), y(0)=y_{0}, \quad \text { a.a. } t \in[0, T]
$$

and of the dual problem

$$
\dot{\psi}=-A^{*} \psi+f(t), \psi(T)=\psi_{T}, \quad \text { a.a. } t \in[0, T]
$$

are strongly continuous in t in the norm of Y_{1} ． $A^{*} \in \mathcal{L}\left(Y_{-1}, Y_{0}\right)$ denotes the adjoint to A ，i．e．， $(A y, \eta)_{-1,1}=\left(y, A^{*} \eta\right)_{-1,1}, \forall y, \eta \in Y_{1}$ ．
（F2）The pair (A, B) is L^{2}－controllable，i．e．，for arbitrary $y_{0} \in Y_{0}$ exists a control $\xi(\cdot) \in L^{2}(0, \infty$ ；三）such that the problem

$$
\dot{y}=A y+B \xi, \quad y(0)=y_{0}
$$

is well－posed on the semiaxis $[0,+\infty)$ ，i．e．，there exists a solution $y(\cdot) \in \mathcal{L}_{\infty}$ with $y(0)=y_{0}$ ．
（F3）$F(y, \xi)$ is an Hermitian form on $Y_{1} \times$ 三，i．e．，

$$
F(y, \xi)=\left(F_{1} y, y\right)_{-1,1}+2 \operatorname{Re}\left(F_{2} y, \xi\right)_{\equiv}+\left(F_{3} \xi, \xi\right)_{\equiv}
$$

where
$F_{1}=F_{1}^{*} \in \mathcal{L}\left(Y_{1}, Y_{-1}\right), F_{2} \in \mathcal{L}\left(Y_{0}\right.$, 三）,$F_{3}=F_{3}^{*} \in \mathcal{L}($ 三，三）.
Define the frequency－domain condition［Likhtarnikov and Yakubovich， 1976］

$$
\alpha:=\sup _{\omega, y, \xi}\left(\|y\|_{1}^{2}+\|\xi\|_{\underline{2}}^{2}\right)^{-1} F(y, \xi),
$$

where the supremum is taken over all triples $(\omega, y, \xi) \in \mathbb{R}_{+} \times Y_{1} \times$ 三 such that $i \omega y=A y+B \xi$ ．

4. Absolute observation - stability of evolutionary inequalities

For a function $z(\cdot) \in L^{2}\left(\mathbb{R}_{+} ; Z\right)$ we denote their norm by

$$
\|z(\cdot)\|_{2, Z}:=\left(\int_{0}^{\infty}\|z(t)\|_{Z}^{2} d t\right)^{1 / 2}
$$

Definition 3 a) The inequality (6), (7) is said to be absolutely dichotomic (i.e., in the classes $\mathcal{N}(F, G), \mathcal{M}(d))$ with respect to the observation z from (8) if for any solution $\{y(\cdot), \xi(\cdot)\}$ of (6), (7) with $y(0)=y_{0}, \xi(0)=\xi_{0} \in \mathcal{E}\left(y_{0}\right)$ the following is true: Either $y(\cdot)$ is unbounded on $[0, \infty)$ in the Y_{0}-norm or $y(\cdot)$ is bounded in Y_{0} in this norm and there exist constants c_{1} and c_{2} (which depend only on $A, B, \mathcal{N}(F, G)$ and $\mathcal{M}(d))$ such that

$$
\begin{equation*}
\|D y(\cdot)+E \xi(\cdot)\|_{2, Z}^{2} \leq c_{1}\left(\left\|y_{0}\right\|_{0}^{2}+c_{2}\right) . \tag{9}
\end{equation*}
$$

b) The inequality (6), (7) is said to be absolutely stable with respect to the observation z from (8) if (9) holds for any solution $\{y(\cdot), \xi(\cdot)\}$ of (6), (7).

Definition 4 The inequality (6)-(8) with $f \equiv 0$ is said to be minimally stable if the resulting equation for $\psi \equiv 0$ is minimally stable, i.e., there exists a bounded linear operator $K: Y_{1} \rightarrow$ 三 such that the operator $A+B K$ is stable, i.e. for some $\varepsilon>0$

$$
\sigma(A+B K) \subset\{s \in \mathbb{C}: \operatorname{Re} s \leq-\varepsilon<0\}
$$

with

$$
\begin{equation*}
\underset{t}{F(y, K y) \geq 0, \quad \forall y \in Y_{1}, ~} \tag{10}
\end{equation*}
$$

and

$$
\int_{s}^{t} G(y(\tau), K y(\tau)) d \tau \geq 0
$$

$$
\begin{equation*}
\forall s, t: 0 \leq s<t, \quad \forall y \in L_{\text {loc }}^{2}\left(\mathbb{R}_{+} ; Y_{1}\right) \tag{11}
\end{equation*}
$$

Theorem 1 Consider the evolution problem (6) - (8) with $\varphi \in \mathcal{N}(F, G)$ and $\psi \in \mathcal{M}(d)$. Suppose that for the operators A^{c}, B^{c} the assumptions (F1) and (F2) are satisfied. Suppose also that there exist an $\alpha>0$ such that with the transfer operator

$$
\begin{equation*}
\chi^{(z)}(s)=D^{c}\left(s I^{c}-A^{c}\right)^{-1} B^{c}+E^{c} \quad\left(s \notin \sigma\left(A^{c}\right)\right) \tag{12}
\end{equation*}
$$

the frequency-domain condition

$$
\begin{aligned}
& F^{c}\left(\left(i \omega I^{c}-A^{c}\right)^{-1} B^{c} \xi, \xi\right) \\
& +G^{c}\left(\left(i \omega I^{c}-A^{c}\right)^{-1} B^{c} \xi, \xi\right) \leq-\alpha\left\|\chi^{(z)}(i \omega) \xi\right\|_{Z^{c}}^{2} \\
& \forall \omega \in \mathbb{R}: i \omega \notin \sigma\left(A^{c}\right), \quad \forall \xi \in \Xi^{c}
\end{aligned}
$$

is satisfied and the functional

$$
\begin{aligned}
J(y(\cdot), \xi(\cdot)):= & \int_{0}^{\infty}\left[F^{c}(y(\tau), \xi(\tau))+G^{c}(y(\tau), \xi(\tau))\right. \\
& \left.+\alpha\left\|D^{c} y(\tau)+E^{c} \xi(\tau)\right\|_{Z^{c}}^{2}\right] d \tau
\end{aligned}
$$

is bounded from above on any set

$$
\begin{aligned}
& \mathbf{M}_{y_{0}}:=\left\{y(\cdot), \xi(\cdot): \dot{y}=A y+B \xi \quad \text { on } \quad \mathbb{R}_{+}\right. \\
& \left.y(0)=y_{0}, y(\cdot) \in \mathcal{L}_{\infty}, \xi(\cdot) \in L^{2}(0, \infty ; \equiv)\right\}
\end{aligned}
$$

Suppose further that the inequality (6)-(8) with $f \equiv 0$ is minimally stable, i.e., (10) and (11) are satisfied with some operator $K \in$ $\mathcal{L}\left(Y_{1}, \equiv\right)$ and that the pair $(A+B K, D+E K)$ is observable in the sense of Kalman, i.e., for any solution $y(\cdot)$ of

$$
\dot{y}=(A+B K) y, \quad y(0)=y_{0}
$$

with $z(t)=(D+E K) y(t)=0$ for a.a. $t \geq 0$ it follows that $y(0)=y_{0}=0$.
Then inequality (6), (7) is absolutely stable with respect to the observation z from (8).
Proof: Reitmann, V. and H. Kantz, Observation stability of controlled evolutionary variational inequalities. Preprint-Series DFGSPP 1114, Preprint 21, Bremen, 2003.

5. Application of observation stability to the beam equation

Consider the equation of a beam of length l, with damping and Hookean material, given as

$$
\begin{align*}
& \rho \mathbf{A} \frac{\partial^{2} u}{\partial t^{2}}+\gamma \frac{\partial u}{\partial t}-\frac{\partial}{\partial x}\left(\frac{\mathbf{E A}}{3} \tilde{g}\left(\frac{\partial u}{\partial x}\right)\right)=0, \tag{13}\\
& u(0, t)=u(l, t)=0 \text { for } t>0, \tag{14}\\
& u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x) \text { for } x \in(0, l) . \tag{15}
\end{align*}
$$

Here u is the deformation in the x direction. Assume that the cross section area A, the viscose damping γ, the mass density ρ and the generalized modulus of elasticity E are constant. The nonlinear stress-strain law \tilde{g}, is given by

$$
\begin{equation*}
\tilde{g}(w)=1+w-(1+w)^{-2}, \quad w \in(-1,1) . \tag{16}
\end{equation*}
$$

Assume that $\tilde{g}(w)=g(w)+w$.

$$
\begin{equation*}
\rho \mathbf{A} \frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial}{\partial x}\left(\frac{\text { EA }}{3} \frac{\partial u}{\partial x}\right)+\gamma \frac{\partial u}{\partial t}-\frac{\partial}{\partial x}\left(\frac{\text { EA }}{3} g\left(\frac{\partial u}{\partial x}\right)\right)=0 . \tag{17}
\end{equation*}
$$

Assume also that $\mathcal{V}_{1} \subset \mathcal{V}_{0} \subset \mathcal{V}_{-1}$ is a Gelfand triple with

$$
\begin{equation*}
\mathcal{V}_{0}:=L^{2}(0, l), \mathcal{V}_{1}:=H_{0}^{1}(0, l) \text { and } \mathcal{V}_{-1}:=H^{-1}(0, l) \tag{18}
\end{equation*}
$$

Then equation (13) - (15) can be rewritten in \mathcal{V}_{-1} as

$$
\begin{align*}
& \rho \mathbf{A} u_{t t}+\mathcal{A}_{1} u+\mathcal{A}_{2} u_{t}+\mathcal{C}^{*} g(\mathcal{C} u)=0 \tag{19}\\
& u(0)=u_{0}, \quad u_{t}(0)=u_{1} \tag{20}
\end{align*}
$$

with $\mathcal{A}_{1} \in \mathcal{L}\left(\mathcal{V}_{1}, \mathcal{V}_{-1}\right), \mathcal{A}_{2} \in \mathcal{L}\left(\mathcal{V}_{1}, \mathcal{V}_{-1}\right)$ (strong damping), $\mathcal{C} \in \mathcal{L}\left(\mathcal{V}_{1}, \mathcal{V}_{0}\right)$ and $g: \mathcal{V}_{0} \rightarrow \mathcal{V}_{0}$. The operators \mathcal{A}_{1} and \mathcal{A}_{2} are associated with their bilinear forms $a_{i}: \mathcal{V}_{1} \times \mathcal{V}_{1} \rightarrow \mathbb{R}(i=1,2)$ through $\left(\mathcal{A}_{i} v, w\right)_{\mathcal{V}_{-1}, V_{1}}=a_{i}(v, w), \forall v, w \in \mathcal{V}_{0}$.

Assumptions:

(A1) a) The form a_{1} is symmetric on $\mathcal{V}_{0} \times \mathcal{V}_{\text {; }}$
b) a_{1} is \mathcal{V}_{1} continuous, i.e., for some $c_{1}>0$ holds $\left|a_{1}(v, w)\right| \leq c_{1}\|v\|_{\mathcal{V}_{1}}\|w\|_{\mathcal{V}_{1}}, \quad \forall v, w \in \mathcal{V}_{1}$;
c) a_{1} is strictly \mathcal{V}_{1}-elliptic, i.e., for some $k_{1}>0$ holds $a_{1}(v, v) \geq k_{1}\|v\|_{\mathcal{V}_{1}}^{2}, \quad \forall v \in \mathcal{V}_{1}$.
(A2) a) The form a_{2} is \mathcal{V}_{1} continuous, i.e., for some $c_{2}>0$ holds $\left|a_{2}(v, w)\right| \leq c_{2}\|v\|_{\mathcal{V}_{1}}\|w\|_{\nu_{1}}, \forall v, w \in \mathcal{V}_{1}$.
b) The form a_{2} is \mathcal{V}_{1} coercive and symmetric, i.e., there are $k_{2}>0$ and $\lambda_{0} \geq 0$ s.t.
$a_{2}(v, v)+\lambda_{0}\|v\|_{\mathcal{V}_{0}}^{2} \geq k_{2}\|v\|_{\mathcal{V}_{1}}^{2} \quad$ and $a_{2}(v, w)=a_{2}(w, v), \quad \forall v, w \in \mathcal{V}_{1}$.
(A3) a) The operator $\mathcal{C} \in \mathcal{L}\left(\mathcal{V}_{1}, \mathcal{V}_{0}\right)$ satisfies with some $k \geq 0$ the inequality

$$
\|\mathcal{C} v\|_{\mathcal{V}_{0}} \leq \sqrt{k}\|v\|_{\mathcal{V}_{1}}, \quad \forall v \in \mathcal{V}_{1} .
$$

$g: \mathcal{V}_{0} \rightarrow \mathcal{V}_{0}$ is continuous and $\|g(v)\|_{\mathcal{V}_{0}} \leq c_{1}\|v\|_{\mathcal{V}_{0}}+$ c_{2} for $v \in \mathcal{V}_{0}$, where c_{1} and c_{2} are nonnegative constants.
b) g is of gradient type, i.e., there exists a coninuous Frechét-differentiable functional $G: \mathcal{V}_{0} \rightarrow \mathbb{R}$, whose Frechét derivative $G^{\prime}(v) \in \mathcal{L}\left(\mathcal{V}_{0}, \mathbb{R}\right)$ at any $v \in \mathcal{V}_{0}$ can be represented in the form

$$
G^{\prime}(v) w=(g(v), w) \mathcal{V}_{0}, \quad \forall w \in \mathcal{V}_{0} .
$$

c) $g(0)=0$ and for some positive $\varepsilon<1$ we have for all $v, w \in \mathcal{V}_{0}$

$$
\begin{equation*}
(g(v)-g(w), v-w)_{\mathcal{V}_{0}} \geq-\varepsilon k_{1} k^{-1}\|v-w\|_{\mathcal{V}_{0}}^{2} . \tag{21}
\end{equation*}
$$

Definition 5 We say that $u \in \mathcal{L}_{T}$ is a weak solution of (19), (20) if

$$
\begin{array}{r}
\left(u_{t t}, \eta\right)_{\mathcal{V}_{-1}, \mathcal{V}_{1}}+a_{1}(u, \eta)+a_{2}\left(u_{t}, \eta\right)+(g(\mathcal{C} u), \mathcal{C} u)_{0}=0 \tag{22}\\
\forall \eta \in \mathcal{L}_{T}, \text { a.a. } t \in[0, T] .
\end{array}
$$

Introduce $Y_{0}:=\mathcal{V}_{1} \times \mathcal{V}_{0}$ in the coordinates $y=\left(y_{1}, y_{2}\right)=\left(u, u_{t}\right)$. Define for this $Y_{1}:=\mathcal{V}_{1} \times \mathcal{V}_{1}$ and $a: Y_{1} \times Y_{1} \rightarrow \mathbb{R}$ by

$$
\begin{align*}
a\left(\left(v_{1}, v_{2}\right),\left(w_{1}, w_{2}\right)\right)= & \left(v_{2}, w_{1}\right) \nu_{1}-a_{1}\left(v_{1}, w_{2}\right)-a_{2}\left(v_{2}, w_{2}\right), \\
& \forall\left(v_{1}, v_{2}\right),\left(w_{1}, w_{2}\right) \in Y_{1} \times Y_{1} . \tag{23}
\end{align*}
$$

The norms in the product spaces Y_{0} and Y_{1} are

$$
\begin{aligned}
& \left\|\left(y_{1}, y_{2}\right)\right\|_{0}^{2}:=\left\|y_{1}\right\|_{\mathcal{V}_{1}}^{2}+\left\|y_{2}\right\|_{\mathcal{V}_{0}}^{2}, \quad\left(y_{1}, y_{2}\right) \in Y_{0}, \\
& \text { and } \\
& \left\|\left(y_{1}, y_{2}\right)\right\|_{1}^{2}:=\left\|y_{1}\right\|_{\mathcal{V}_{1}}^{2}+\left\|y_{2}\right\|_{\mathcal{V}_{1}}^{2}, \quad\left(y_{1}, y_{2}\right) \in Y_{1} .
\end{aligned}
$$

Then (22) can be rewritten as

$$
\begin{gathered}
(\dot{y}, \eta)_{-1,1}-a(y, \eta)=(B \varphi(C y), \eta)_{-1,1}, y(0)=\left(u_{0}, u_{1}\right), \\
\forall \eta \in Y_{1}, \\
\text { where } \quad B \varphi(C y):=\binom{0}{-\mathcal{C}^{*} g\left(\mathcal{C} y_{1}\right)}, \\
\dot{y}=A y+B \varphi(C y), y(0)=y_{0}, \\
a(v, w)=(A v, w)_{-1,1}, \quad \forall v, w \in Y_{1}, \quad \text { i.e., } A=\left[\begin{array}{cc}
0 & I \\
-\mathcal{A}_{1} & -\mathcal{A}_{2}
\end{array}\right] .
\end{gathered}
$$

$Y_{1} \subset Y_{0}$ is completely continuous, A generates an analytic semigroup on Y_{1}, Y_{0} and $Y_{-1}=\mathcal{V}_{1} \times \mathcal{V}_{-1}$.

The semigroup is exponentially stable on Y_{1}, Y_{0} and Y_{-1}, the pair (A, B) is exponentially stabilizable.
Consider with parameters $\varepsilon>0$ and $\alpha \in \mathbb{R}$

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}+2 \varepsilon \frac{\partial u}{\partial t}-\alpha \frac{\partial^{2} u}{\partial x^{2}}=-\alpha\left(\frac{\partial}{\partial x}\left(-g\left(\frac{\partial u}{\partial x}\right)\right)\right)=: \alpha \frac{\partial}{\partial x} \xi, \tag{27}
\end{equation*}
$$

the boundary and initial conditions (14), (15), where $\xi=-g=\varphi$ is introduced as new nonlinearity.
Assume that $\varphi \in \mathcal{N}(F)$, with the quadratic form $F(w, \xi)=$ $\mu w^{2}-\xi w$ on $\mathbb{R} \times \mathbb{R}$, where $\mu>0$ is a certain parameter.
$\lambda_{k}>0$ and $e_{k}(k=1,2, \ldots)$ are the eigenvalues resp. eigenfunctions of the operator $-\Delta$ with zero boundary conditions.
Write formally the Fourier series of the solution $u(x, t)$ and the perturbation $\xi(x, t)$ to the (linear) equation (27) as

$$
\begin{equation*}
u(x, t)=\sum_{k=1}^{\infty} u^{k}(t) e_{k} \quad \text { and } \quad \xi(x, t)=\sum_{k=1}^{\infty} \xi^{k}(t) e_{k} \tag{28}
\end{equation*}
$$

Introduce the Fourier transforms \tilde{u} and $\tilde{\xi}$ of (28) with respect to the time variable. From (27) for $k=1,2, \ldots$ it follows that

$$
\begin{gather*}
-\omega^{2} \tilde{u}^{k}(i \omega)+2 i \omega \varepsilon \tilde{u}^{k}(i \omega)+\lambda_{k} \tilde{u}^{k}(i \omega)=-\alpha \sqrt{\lambda_{k}} \tilde{\xi}^{k}(i \omega) \tag{29}\\
\tilde{u}^{k}=\chi\left(i \omega, \lambda_{k}\right) \tilde{\xi}^{k} \tag{30}\\
\chi\left(i \omega, \lambda_{k}\right)=\left(-\omega^{2}+2 i \omega \varepsilon+\alpha \lambda_{k}\right)^{-1}\left(\alpha \lambda_{k}\right) \\
\forall \omega \in \mathbb{R}:-\omega^{2}+2 i \omega \varepsilon+\alpha \lambda_{k} \neq 0 \tag{31}
\end{gather*}
$$

Consider the functional

$$
\begin{equation*}
J(w, \xi):=\operatorname{Re} \int_{0}^{\infty} \int_{0}^{l}\left(\mu|w|^{2}-w \xi^{*}\right) d x d t \tag{32}
\end{equation*}
$$

The Parseval equality for (32) gives

$$
\begin{aligned}
& |\tilde{w}|^{2}=\sum_{k=1}^{\infty} \lambda_{k}\left|\tilde{u}^{k}\right|^{2}=\sum_{k=1}^{\infty} \lambda_{k}\left|\tilde{u}^{k}\right|^{2}=\sum_{k=1}^{\infty} \lambda_{k}\left|\chi\left(i \omega, \lambda_{k}\right)\right|^{2}\left|\tilde{\xi}^{k}\right|^{2} \\
& \text { and } \quad \tilde{w} \tilde{\xi}^{*}=\sum_{k=1}^{\infty} \sqrt{\lambda_{k}} \tilde{u}^{k}\left(\tilde{\xi}^{k}\right)^{*}=\sum_{k=1}^{\infty} \sqrt{\lambda_{k}} \chi\left(i \omega, \lambda_{k}\right)\left|\tilde{\xi}^{k}\right|^{2} .
\end{aligned}
$$

Then [Arov and Yakubovich, 1982] the functional (32) is bounded from above if and only if the functional

$$
\begin{array}{r}
\operatorname{Re} \int_{-\infty}^{+\infty} \int_{0}^{l}\left[\mu \left(\sum_{k=1}^{\infty} \lambda_{k}\left|\chi\left(i \omega, \lambda_{k}\right)\right|^{2}\left|\tilde{\xi}^{k}\right|^{2}\right.\right. \\
\left.\left.\quad-\sum_{k=1}^{\infty} \sqrt{\lambda_{k}} \chi\left(i \omega, \lambda_{k}\right)\left|\tilde{\xi}^{k}\right|^{2}\right)\right] d x d \omega \tag{33}
\end{array}
$$

is bounded on the subspace of Fourier-transforms from (30), or the frequency-domain condition

$$
\begin{align*}
& \mu \lambda_{k}\left|\chi\left(i \omega, \lambda_{k}\right)\right|^{2}-\sqrt{\lambda_{k}} \operatorname{Re} \chi\left(i \omega, \lambda_{k}\right)<0, \tag{34}\\
& \forall \omega \in \mathbb{R}:-\omega^{2}+2 i \omega \varepsilon+\alpha \lambda_{k} \neq 0, k=1,2, \ldots,
\end{align*}
$$

is satisfied, where $\chi\left(i \omega, \lambda_{k}\right)=\left(-\omega^{2}+2 i \omega \varepsilon+\alpha \lambda_{k}\right)^{-1}\left(-\alpha \sqrt{\lambda_{k}}\right)$.

[^0]: *Supported by DAAD (German Academic Exchange Service)

