Absolute observation stability for evolutionary variational inequalities

G.A. Leonov and V. Reitmann *

Saint-Petersburg State University, Russia Department of Mathematics and Mechanics

6th EUROMECH Conference ENOC 2008 June 30 — July 4, 2008, Saint-Petersburg, RUSSIA

*Supported by DAAD (German Academic Exchange Service)

1. Introduction

Suppose: Y_0 a real Hilbert space, $(\cdot, \cdot)_0$ and $\|\cdot\|_0$ the scalar product resp. the norm on Y_0 , $A : \mathcal{D}(A) \to Y_0$ the generator of a C_0 -semigroup on $Y_0, Y_1 := \mathcal{D}(A)$. For fixed $\beta \in \rho(A) \cap \mathbb{R}$ for any $y, \eta \in Y_1$ define $(y, \eta)_1 := ((\beta I - A)y, (\beta I - A)\eta)_0$. (1)

 $Y_{-1} \text{ is the completion of } Y_0 \text{ with respect to the norm,} \\ \|y\|_{-1} := \|(\beta I - A)^{-1}y\|_0 \text{ is the scalar product} \\ (y, \eta)_{-1} := \left((\beta I - A)^{-1}y, \ (\beta I - A)^{-1}\eta\right)_0, \quad \forall y, \eta \in Y_{-1}.$ (2)

 $Y_1 \subset Y_0 \subset Y_{-1}$ is a continuous embedding, i.e., for $\alpha = 1, 0$, $Y_\alpha \subset Y_{\alpha-1}$, $\|y\|_{\alpha-1} \leq c \|y\|_{\alpha}$, $\forall y \in Y_{\alpha}$.

 (Y_1, Y_0, Y_{-1}) is called a *Gelfand triple*. For any $y \in Y_0$ and $z \in Y_1$ we have

$$|(y,z)_0| = |(\beta I - A)^{-1}y, ((\beta I - A)z)_0| \le ||y||_{-1}||z||_1.$$
 (3)

Extend $(\cdot, z)_0$ by continuity onto Y_{-1}

$$|(y,z)_0| \le ||y||_{-1} ||z||_1, \quad \forall \ y \in Y_{-1}, \forall \ z \in Y_1.$$

Denote this extension also by $(\cdot, \cdot)_{-1,1}$. Consider the Bochner measurable functions in

 $L^{2}(0,T;Y_{j}) \quad (j=1,0,-1)$

$$\|y(\cdot)\|_{2,j} := \left(\int_{0}^{T} \|y(t)\|_{j}^{2} dt\right)^{1/2}.$$
 (4)

 \mathcal{L}_T is the space of functions $y \in L^2(0, T; Y_1)$, s.th. $\dot{y} \in L^2(0, T; Y_{-1})$. \mathcal{L}_T is equipped with the norm

$$\|y\|_{\mathcal{L}_{T}} := \left(\|y(\cdot)\|_{2,1}^{2} + \|\dot{y}(\cdot)\|_{2,-1}^{2}\right)^{1/2}.$$
 (5)

2. Evolutionary variational inequalities

Take T > 0 arbitrary and consider for a.a. $t \in [0, T]$ the evolutionary variational inequality

$$(\dot{y} - Ay - B\xi - f(t), \eta - y)_{-1,1}$$

+ $\psi(\eta) - \psi(y) \ge 0$, $\forall \eta \in Y_1$ (6)

$$y(0) = y_0 \in Y_0 , w(t) = Cy(t) , \quad \xi(t) \in \varphi(t, w(t)) .$$
(7)

$$w(t) = Cy(t), \quad \xi(t) \in \varphi(t, w(t)), \quad (7)$$

$$\xi(0) = \xi_0 \in \mathcal{E}(y_0),$$

$$z(t) = Dy(t) + E\xi(t)$$
. (8)

 $C \in \mathcal{L}(Y_{-1}, W), D \in \mathcal{L}(Y_1, Z)$ and $E \in \mathcal{L}(\Xi, Z)$, Ξ, W and Z are real Hilbert spaces, $Y_1 \subset Y_0 \subset Y_{-1}$ is a real Gelfand triple and $A \in \mathcal{L}(Y_0, Y_{-1}), B \in \mathcal{L}(\Xi, Y_{-1}), \varphi : \mathbb{R}_+ \times W \to 2^{\Xi}$ is a set-valued map, $\psi : Y_1 \to \mathbb{R}_+$ and $f : \mathbb{R}_+ \to Y_{-1}$ are nonlinear maps.

Denote by $\|\cdot\|_{\Xi}$, $\|\cdot\|_{W}$, $\|\cdot\|_{Z}$ the norm in Ξ , W resp. Z.

Fig. 1 State / linear output / nonlinear output / observation diagram

Definition 1 Any pair of functions $\{y(\cdot), \xi(\cdot)\}$ with $y \in \mathcal{L}_T$ and $\xi \in L^2_{loc}(0, \infty; \Xi)$ such that $B\xi \in \mathcal{L}_T$, satisfying (6), (7) almost everywhere on (0, T), is called **solution of the Cauchy problem** $y(0) = y_0, \ \xi(0) = \xi_0$ defined for (6), (7).

Assumptions:

(C1) The Cauchy-problem (6), (7) has for arbitrary $y_0 \in Y_0$ and $\xi_0 \in \mathcal{E}(y_0) \subset \Xi$ at least one solution $\{y(\cdot), \xi(\cdot)\}$.

(C2) a) The nonlinearity $\varphi : \mathbb{R}_+ \times W \to \Xi$ is a function having the property that $\mathcal{A}(t) := -A - B\varphi(t, C \cdot) : Y_1 \to Y_{-1}$ is a family of monotone hemicontinuous operators such that the inequality

 $\|\mathcal{A}(t)y\|_{-1} \leq c_1 \|y\|_1 + c_2, \quad \forall y \in Y_1,$

is satisfied, where $c_1 > 0$ and $c_2 \in \mathbb{R}$ are constants not depending on $t \in [0, T]$.

For any $y \in Y_1$ and for any bounded set $U \subset Y_1$ the family of functions $\{(\mathcal{A}(t)\eta, y)_{-1,1}, \eta \in U\}$ is equicontinuous with respect to t on any compact subinterval of \mathbb{R}_+ .

b) ψ is a proper, convex, and semicontinuous from below function on $\mathcal{D}(\psi) \subset Y_1$.

(C3) $f \in L^2_{loc}(\mathbb{R}_+; Y_{-1}).$

(C4) Consider only solutions y of (6),(7) for which \dot{y} belongs to $L^2_{loc}(\mathbb{R}; Y_{-1})$.

Remark 1 When $\psi \equiv 0$ in (6) the evolutionary variational inequality is equivalent for a.a. $t \in [0, T]$ to the equation

$$\dot{y} = Ay + B\xi + f(t) \text{ in } Y_{-1},$$

$$y(0) = Y_0, \ w(t) = Cy(t), \ \xi(t) \in \varphi(t, w(t)),$$

$$\xi(0) \in \mathcal{E}(y_0),$$

$$z(t) = Dy(t) + E\xi(t).$$

Fig. 2Fig. 3Generalized play operatorPlay (model of plasticity with strain-hardening)

Definition 2 a) Suppose *F* and *G* are quadratic forms on $Y_1 \times \Xi$. The **class of nonlinearities** $\mathcal{N}(F,G)$ defined by *F* and *G* consists of all maps $\varphi : \mathbb{R}_+ \times W \to 2^{\Xi}$ such that for any $y(\cdot) \in L^2_{loc}(0, \infty; Y_1)$ with $\dot{y}(\cdot) \in L^2_{loc}(0, \infty; Y_{-1})$ and any $\xi(\cdot) \in L^2_{loc}(0, \infty; \Xi)$ with $\xi(t) \in \varphi(t, Cy(t))$ for a.e. $t \ge 0$, it follows that $F(y(t), \xi(t)) \ge 0$ for a.e. $t \ge 0$ and (for any such pair $\{y, \xi\}$) there exists a continuous functional $\Phi : W \to \mathbb{R}$ such that for any times $0 \le s < t$ we have $\int_{s}^{t} G(y(\tau), \xi(\tau)) d\tau \ge \Phi(Cy(t)) - \Phi(Cy(s))$. b) The **class of functionals** $\mathcal{M}(d)$ defined by a constant d > 0 consists of all maps $\psi : Y_1 \to \mathbb{R}_+$ such that for any $y \in L^2_{loc}(0, \infty; Y_0)$ with $\dot{y} \in L^2_{loc}(0, \infty; Y_1)$ the function $t \mapsto \psi(y(t))$ belongs to $L^1(0, \infty; \mathbb{R})$ satisfying $\int_{0}^{\infty} \psi(y(t)) dt \le d$ and for any $\varphi \in \mathcal{N}(F, G)$ and any $\psi \in \mathcal{M}(d)$ the Cauchy-problem (6) - (8) has a solution $\{y(\cdot), \xi(\cdot)\}$ on any time interval [0, T].

3. Further assumptions

(F1) $A \in \mathcal{L}(Y_1, Y_{-1})$ is *regular*, i.e., for any $T > 0, y_0 \in Y_1$, $\psi_T \in Y_1$ and $f \in L^2(0, T; Y_0)$ the solutions of the direct problem

$$\dot{y} = Ay + f(t), \ y(0) = y_0, \quad \text{a.a.} \ t \in [0, T]$$

and of the dual problem

$$\dot{\psi} = -A^*\psi + f(t), \ \psi(T) = \psi_T, \quad \text{a.a. } t \in [0,T]$$

are strongly continuous in t in the norm of Y_1 . $A^* \in \mathcal{L}(Y_{-1}, Y_0)$ denotes the adjoint to A, i.e., $(Ay, \eta)_{-1,1} = (y, A^*\eta)_{-1,1}, \forall y, \eta \in Y_1.$

(F2) The pair (A, B) is L^2 -controllable, i.e., for arbitrary $y_0 \in Y_0$ exists a control $\xi(\cdot) \in L^2(0, \infty; \Xi)$ such that the problem

 $\dot{y} = Ay + B\xi, \quad y(0) = y_0$

is well-posed on the semiaxis $[0, +\infty)$, i.e., there exists a solution $y(\cdot) \in \mathcal{L}_{\infty}$ with $y(0) = y_0$.

(F3) $F(y,\xi)$ is an Hermitian form on $Y_1 \times \Xi$, i.e.,

$$F(y,\xi) = (F_1y,y)_{-1,1} + 2\operatorname{Re}(F_2y,\xi)_{\Xi} + (F_3\xi,\xi)_{\Xi},$$

where

$$F_1 = F_1^* \in \mathcal{L}(Y_1, Y_{-1}), \ F_2 \in \mathcal{L}(Y_0, \Xi), \ F_3 = F_3^* \in \mathcal{L}(\Xi, \Xi).$$

Define the *frequency-domain condition* [Likhtarnikov and Yakubovich, 1976]

$$\alpha := \sup_{\omega, y, \xi} (\|y\|_1^2 + \|\xi\|_{\Xi}^2)^{-1} F(y, \xi) ,$$

where the supremum is taken over all triples

 $(\omega, y, \xi) \in \mathbb{R}_+ \times Y_1 \times \Xi$ such that $i\omega y = Ay + B\xi$.

4. Absolute observation - stability of evolutionary inequalities

For a function $z(\cdot) \in L^2(\mathbb{R}_+; Z)$ we denote their norm by

$$||z(\cdot)||_{2,Z} := \left(\int_0^\infty ||z(t)||_Z^2 dt\right)^{1/2}$$

Definition 3 a) The inequality (6), (7) is said to be **absolutely dichotomic** (i.e., in the classes $\mathcal{N}(F,G), \mathcal{M}(d)$) with respect to **the observation** z from (8) if for any solution $\{y(\cdot), \xi(\cdot)\}$ of (6), (7) with $y(0) = y_0, \xi(0) = \xi_0 \in \mathcal{E}(y_0)$ the following is true: Either $y(\cdot)$ is unbounded on $[0, \infty)$ in the Y_0 -norm or $y(\cdot)$ is bounded in Y_0 in this norm and there exist constants c_1 and c_2 (which depend only on $A, B, \mathcal{N}(F, G)$ and $\mathcal{M}(d)$) such that

$$\|Dy(\cdot) + E\xi(\cdot)\|_{2,Z}^2 \le c_1(\|y_0\|_0^2 + c_2).$$
(9)

b) The inequality (6), (7) is said to be **absolutely stable with respect to the observation** z from (8) if (9) holds for any solution $\{y(\cdot), \xi(\cdot)\}$ of (6), (7).

Definition 4 The inequality (6)–(8) with $f \equiv 0$ is said to be **minimally stable** if the resulting equation for $\psi \equiv 0$ is minimally stable, i.e., there exists a bounded linear operator $K : Y_1 \to \Xi$ such that the operator A + BK is stable, i.e. for some $\varepsilon > 0$

$$\sigma(A + BK) \subset \{s \in \mathbb{C} : \operatorname{Re} s \leq -\varepsilon < 0\}$$
with
$$F(y, Ky) \geq 0, \quad \forall y \in Y_1, \quad (10)$$
and
$$\int_{s}^{t} G(y(\tau), Ky(\tau)) d\tau \geq 0,$$

$$\forall s, t : 0 \leq s < t, \quad \forall y \in L^2_{\operatorname{loc}}(\mathbb{R}_+; Y_1). \quad (11)$$

Theorem 1 Consider the evolution problem (6) – (8) with $\varphi \in \mathcal{N}(F,G)$ and $\psi \in \mathcal{M}(d)$. Suppose that for the operators A^c, B^c the assumptions (F1) and (F2) are satisfied. Suppose also that there exist an $\alpha > 0$ such that with the transfer operator

 $\chi^{(z)}(s) = D^{c}(sI^{c} - A^{c})^{-1}B^{c} + E^{c} \qquad (s \notin \sigma(A^{c}))$ (12)

the frequency-domain condition

$$F^{c} ((i\omega I^{c} - A^{c})^{-1}B^{c}\xi, \xi)$$

+ $G^{c} ((i\omega I^{c} - A^{c})^{-1}B^{c}\xi, \xi) \leq -\alpha \|\chi^{(z)}(i\omega)\xi\|_{Z^{c}}^{2}$
 $\forall \omega \in \mathbb{R} : i\omega \notin \sigma(A^{c}), \quad \forall \xi \in \Xi^{c}$

is satisfied and the functional

$$J(y(\cdot),\xi(\cdot)) := \int_{0}^{\infty} \left[F^{c}(y(\tau),\xi(\tau)) + G^{c}(y(\tau),\xi(\tau)) + \alpha \|D^{c}y(\tau) + E^{c}\xi(\tau)\|_{Z^{c}}^{2}\right] d\tau$$

is bounded from above on any set

$$\mathbf{M}_{y_0} := \{ y(\cdot), \xi(\cdot) : \dot{y} = Ay + B\xi \text{ on } \mathbb{R}_+, \\ y(0) = y_0, \, y(\cdot) \in \mathcal{L}_{\infty}, \, \xi(\cdot) \in L^2(0,\infty;\Xi) \} .$$

Suppose further that the inequality (6)–(8) with $f \equiv 0$ is minimally stable, i.e., (10) and (11) are satisfied with some operator $K \in \mathcal{L}(Y_1, \Xi)$ and that the pair (A + BK, D + EK) is observable in the sense of Kalman, i.e., for any solution $y(\cdot)$ of

$$\dot{y} = (A + BK)y, \quad y(0) = y_0,$$

with z(t) = (D + EK)y(t) = 0 for a.a. $t \ge 0$ it follows that $y(0) = y_0 = 0$.

Then inequality (6), (7) is absolutely stable with respect to the observation z from (8).

Proof: Reitmann, V. and H. Kantz, Observation stability of controlled evolutionary variational inequalities. Preprint-Series DFG-SPP 1114, Preprint 21, Bremen, 2003.

5. Application of observation stability to the beam equation

Consider the equation of a beam of length l, with damping and Hookean material, given as

$$\rho \mathbf{A} \frac{\partial^2 u}{\partial t^2} + \gamma \frac{\partial u}{\partial t} - \frac{\partial}{\partial x} \left(\frac{\mathbf{E} \mathbf{A}}{\mathbf{3}} \tilde{g} \left(\frac{\partial u}{\partial x} \right) \right) = 0, \qquad (13)$$

$$u(0,t) = u(l,t) = 0 \text{ for } t > 0,$$
 (14)

$$u(x,0) = u_0(x), u_t(x,0) = u_1(x)$$
 for $x \in (0,l)$. (15)

Here u is the deformation in the x direction. Assume that the cross section area A, the viscose damping γ , the mass density ρ and the generalized modulus of elasticity E are constant. The nonlinear stress-strain law \tilde{g} , is given by

$$\tilde{g}(w) = 1 + w - (1 + w)^{-2}, \quad w \in (-1, 1).$$
 (16)

Assume that $\tilde{g}(w) = g(w) + w$.

$$\rho \mathbf{A} \frac{\partial^2 u}{\partial t^2} - \frac{\partial}{\partial x} \left(\frac{\mathbf{E} \mathbf{A}}{\mathbf{3}} \frac{\partial u}{\partial x} \right) + \gamma \frac{\partial u}{\partial t} - \frac{\partial}{\partial x} \left(\frac{\mathbf{E} \mathbf{A}}{\mathbf{3}} g \left(\frac{\partial u}{\partial x} \right) \right) = 0.$$
(17)

Assume also that $\mathcal{V}_1 \subset \mathcal{V}_0 \subset \mathcal{V}_{-1}$ is a Gelfand triple with

$$\mathcal{V}_0 := L^2(0, l), \ \mathcal{V}_1 := H_0^1(0, l) \text{ and } \mathcal{V}_{-1} := H^{-1}(0, l).$$
 (18)

Then equation (13) - (15) can be rewritten in \mathcal{V}_{-1} as

$$\rho \mathbf{A} u_{tt} + \mathcal{A}_1 u + \mathcal{A}_2 u_t + \mathcal{C}^* g(\mathcal{C} u) = 0, \qquad (19)$$

$$u(0) = u_0, \quad u_t(0) = u_1,$$
 (20)

with $\mathcal{A}_1 \in \mathcal{L}(\mathcal{V}_1, \mathcal{V}_{-1})$, $\mathcal{A}_2 \in \mathcal{L}(\mathcal{V}_1, \mathcal{V}_{-1})$ (strong damping), $\mathcal{C} \in \mathcal{L}(\mathcal{V}_1, \mathcal{V}_0)$ and $g : \mathcal{V}_0 \to \mathcal{V}_0$. The operators \mathcal{A}_1 and \mathcal{A}_2 are associated with their bilinear forms $a_i : \mathcal{V}_1 \times \mathcal{V}_1 \to \mathbb{R}$ (i = 1, 2)through $(\mathcal{A}_i v, w)_{\mathcal{V}_{-1}, \mathcal{V}_1} = a_i(v, w)$, $\forall v, w \in \mathcal{V}_0$.

Assumptions:

- (A1) a) The form a_1 is symmetric on $\mathcal{V}_0 \times \mathcal{V}_1$;
 - b) a_1 is \mathcal{V}_1 continuous, i.e., for some $c_1 > 0$ holds $|a_1(v,w)| \leq c_1 \|v\|_{\mathcal{V}_1} \|w\|_{\mathcal{V}_1}, \quad \forall v, w \in \mathcal{V}_1$;
 - c) a_1 is strictly \mathcal{V}_1 -elliptic, i.e., for some $k_1 > 0$ holds $a_1(v,v) \ge k_1 ||v||_{\mathcal{V}_1}^2, \quad \forall v \in \mathcal{V}_1.$
- (A2) a) The form a_2 is \mathcal{V}_1 continuous, i.e., for some $c_2 > 0$ holds $|a_2(v, w)| \le c_2 ||v||_{\mathcal{V}_1} ||w||_{\mathcal{V}_1}, \forall v, w \in \mathcal{V}_1$.
 - b) The form a_2 is \mathcal{V}_1 coercive and symmetric, i.e., there are $k_2 > 0$ and $\lambda_0 \ge 0$ s.t. $a_2(v,v) + \lambda_0 ||v||_{\mathcal{V}_0}^2 \ge k_2 ||v||_{\mathcal{V}_1}^2$ and $a_2(v,w) = a_2(w,v), \quad \forall v, w \in \mathcal{V}_1.$
- (A3) a) The operator $\mathcal{C} \in \mathcal{L}(\mathcal{V}_1, \mathcal{V}_0)$ satisfies with some $k \geq 0$ the inequality

$$\|\mathcal{C}v\|_{\mathcal{V}_0} \leq \sqrt{k} \|v\|_{\mathcal{V}_1}, \quad \forall v \in \mathcal{V}_1.$$

 $g: \mathcal{V}_0 \to \mathcal{V}_0$ is continuous and $\|g(v)\|_{\mathcal{V}_0} \leq c_1 \|v\|_{\mathcal{V}_0} + c_2$ for $v \in \mathcal{V}_0$, where c_1 and c_2 are nonnegative constants.

b) g is of gradient type, i.e., there exists a coninuous Frechét-differentiable functional $G : \mathcal{V}_0 \to \mathbb{R}$, whose Frechét derivative $G'(v) \in \mathcal{L}(\mathcal{V}_0, \mathbb{R})$ at any $v \in \mathcal{V}_0$ can be represented in the form

$$G'(v)w = (g(v), w)_{\mathcal{V}_0}, \quad \forall w \in \mathcal{V}_0.$$

c) g(0) = 0 and for some positive $\varepsilon < 1$ we have for all $v, w \in \mathcal{V}_0$

$$(g(v) - g(w), v - w)_{\mathcal{V}_0} \ge -\varepsilon k_1 k^{-1} \|v - w\|_{\mathcal{V}_0}^2.$$
(21)

Definition 5 We say that $u \in \mathcal{L}_T$ is a *weak solution* of (19), (20) if

$$(u_{tt},\eta)_{\mathcal{V}_{-1},\mathcal{V}_{1}} + a_{1}(u,\eta) + a_{2}(u_{t},\eta) + (g(\mathcal{C}u),\mathcal{C}u)_{0} = 0$$
 (22)
 $\forall \eta \in \mathcal{L}_{T}, \text{ a.a. } t \in [0,T].$

Introduce $Y_0 := \mathcal{V}_1 \times \mathcal{V}_0$ in the coordinates $y = (y_1, y_2) = (u, u_t)$. Define for this $Y_1 := \mathcal{V}_1 \times \mathcal{V}_1$ and $a : Y_1 \times Y_1 \to \mathbb{R}$ by

$$a((v_1, v_2), (w_1, w_2)) = (v_2, w_1)_{\mathcal{V}_1} - a_1(v_1, w_2) - a_2(v_2, w_2),$$

$$\forall (v_1, v_2), (w_1, w_2) \in Y_1 \times Y_1.$$
(23)

The norms in the product spaces Y_0 and Y_1 are

$$\|(y_1,y_2)\|_0^2 := \|y_1\|_{\mathcal{V}_1}^2 + \|y_2\|_{\mathcal{V}_0}^2 \,, \quad (y_1,y_2) \in Y_0 \,,$$
and

$$|(y_1, y_2)|_1^2 := ||y_1||_{\mathcal{V}_1}^2 + ||y_2||_{\mathcal{V}_1}^2, \quad (y_1, y_2) \in Y_1.$$

Then (22) can be rewritten as

$$(\dot{y},\eta)_{-1,1} - a(y,\eta) = (B\varphi(Cy),\eta)_{-1,1}, y(0) = (u_0, u_1),$$

 $\forall \eta \in Y_1,$
(24)

where
$$B\varphi(Cy) := \begin{pmatrix} 0 \\ -\mathcal{C}^*g(\mathcal{C}y_1) \end{pmatrix}$$
, (25)

$$\dot{y} = Ay + B\varphi(Cy), \ y(0) = y_0,$$
 (26)

$$a(v,w) = (Av,w)_{-1,1}, \quad \forall v,w \in Y_1, \quad \text{i.e.}, A = \begin{bmatrix} 0 & I \\ -\mathcal{A}_1 & -\mathcal{A}_2 \end{bmatrix}$$

 $Y_1 \subset Y_0$ is completely continuous, A generates an analytic semigroup on Y_1, Y_0 and $Y_{-1} = \mathcal{V}_1 \times \mathcal{V}_{-1}$. The semigroup is exponentially stable on Y_1, Y_0 and Y_{-1} , the pair (A, B) is exponentially stabilizable.

Consider with parameters $\varepsilon > 0$ and $\alpha \in \mathbb{R}$

$$\frac{\partial^2 u}{\partial t^2} + 2\varepsilon \frac{\partial u}{\partial t} - \alpha \frac{\partial^2 u}{\partial x^2} = -\alpha \left(\frac{\partial}{\partial x} \left(-g \left(\frac{\partial u}{\partial x} \right) \right) \right) =: \alpha \frac{\partial}{\partial x} \xi ,$$
(27)

the boundary and initial conditions (14), (15), where $\xi = -g = \varphi$ is introduced as new nonlinearity.

Assume that $\varphi \in \mathcal{N}(F)$, with the quadratic form $F(w,\xi) = \mu w^2 - \xi w$ on $\mathbb{R} \times \mathbb{R}$, where $\mu > 0$ is a certain parameter.

 $\lambda_k > 0$ and e_k (k = 1, 2, ...) are the eigenvalues resp. eigenfunctions of the operator $-\Delta$ with zero boundary conditions.

Write formally the Fourier series of the solution u(x,t) and the perturbation $\xi(x,t)$ to the (linear) equation (27) as

$$u(x,t) = \sum_{k=1}^{\infty} u^k(t)e_k$$
 and $\xi(x,t) = \sum_{k=1}^{\infty} \xi^k(t)e_k$. (28)

Introduce the Fourier transforms \tilde{u} and $\tilde{\xi}$ of (28) with respect to the time variable. From (27) for k = 1, 2, ... it follows that

$$-\omega^{2}\tilde{u}^{k}(i\omega) + 2i\omega\varepsilon\tilde{u}^{k}(i\omega) + \lambda_{k}\tilde{u}^{k}(i\omega) = -\alpha\sqrt{\lambda_{k}}\tilde{\xi}^{k}(i\omega),$$
(29)

$$\tilde{u}^{k} = \chi \left(i\omega, \lambda_{k} \right) \tilde{\xi}^{k} , \qquad (30)$$

$$\chi (i\omega, \lambda_k) = (-\omega^2 + 2i\omega\varepsilon + \alpha\lambda_k)^{-1} (\alpha\lambda_k), \forall \omega \in \mathbb{R} : -\omega^2 + 2i\omega\varepsilon + \alpha\lambda_k \neq 0.$$
(31)

Consider the functional

$$J(w,\xi) := \operatorname{Re} \int_0^\infty \int_0^l (\mu |w|^2 - w\xi^*) \, dx dt \,.$$
 (32)

The Parseval equality for (32) gives

$$|\tilde{w}|^2 = \sum_{k=1}^{\infty} \lambda_k |\tilde{u}^k|^2 = \sum_{k=1}^{\infty} \lambda_k |\tilde{u}^k|^2 = \sum_{k=1}^{\infty} \lambda_k |\chi(i\omega,\lambda_k)|^2 |\tilde{\xi}^k|^2$$

and
$$\tilde{w}\,\tilde{\xi}^* = \sum_{k=1}^{\infty} \sqrt{\lambda_k}\,\tilde{u}^k\,(\tilde{\xi}^k)^* = \sum_{k=1}^{\infty} \sqrt{\lambda_k}\,\chi\,(i\omega,\lambda_k)|\tilde{\xi}^k|^2$$
.

Then [Arov and Yakubovich, 1982] the functional (32) is bounded from above if and only if the functional

$$\operatorname{Re} \int_{-\infty}^{+\infty} \int_{0}^{l} \left[\mu \left(\sum_{k=1}^{\infty} \lambda_{k} |\chi(i\omega, \lambda_{k})|^{2} |\tilde{\xi}^{k}|^{2} - \sum_{k=1}^{\infty} \sqrt{\lambda_{k}} \chi(i\omega, \lambda_{k}) |\tilde{\xi}^{k}|^{2} \right) \right] dx d\omega$$
(33)

is bounded on the subspace of Fourier-transforms from (30), (31) or the frequency-domain condition

$$\mu \lambda_k |\chi (i\omega, \lambda_k)|^2 - \sqrt{\lambda_k} \operatorname{Re} \chi (i\omega, \lambda_k) < 0,$$

$$\forall \omega \in \mathbb{R} : -\omega^2 + 2 \, i\omega\varepsilon + \alpha \lambda_k \neq 0, \ k = 1, 2, \dots,$$

$$(34)$$

is satisfied, where $\chi(i\omega,\lambda_k) = (-\omega^2 + 2i\omega\varepsilon + \alpha\lambda_k)^{-1}(-\alpha\sqrt{\lambda_k})$.