## On a generalization

# of Leonov's invariant cones method for boundary control problems 

V. Reitmann *<br>Saint-Petersburg State University, Russia<br>Department of Mathematics and Mechanics

Equadiff 07, August 5-11, 2007, Vienna
*Supported by DAAD (German Academic Exchange Service)

## 1. Control systems in Lur'e form with a Duffing type nonlinearity

Let $\mathcal{V}_{1} \subset \mathcal{V}_{0} \subset \mathcal{V}_{-1}$ be a Gelfand rigging of the real Hilbert space $\mathcal{V}_{0}$, i.e. a chain of Hilbert spaces with dense and continuous inclusions. Denote by $(\cdot, \cdot)_{\nu_{j}}$ and $\|\cdot\|_{\nu_{j}}, j=1,0,-1$, the scalar product resp. norm in $\mathcal{V}_{j}(j=1,0,-1)$ and by $(\cdot, \cdot)_{\mathcal{V}_{-1}, \mathcal{V}_{1}}$ the pairing between $\mathcal{V}_{-1}$ and $\mathcal{V}_{1}$.

Let $A_{0} \in \mathcal{L}\left(\mathcal{V}_{1}, \mathcal{V}_{-1}\right)$ be a linear operator,
$b_{0} \in \mathcal{V}_{-1}$ a generalized vector, $c_{0} \in \mathcal{V}_{0}$ a vector and $d_{0}<0$ a number. According to the vectors $c_{0}$ and $b_{0}$ we introduce the linear operators $C_{0} \in \mathcal{L}\left(\mathcal{V}_{0}, \mathbb{R}\right)$ and $B_{0} \in \mathcal{L}\left(\mathbb{R}, \mathcal{V}_{-1}\right)$ by $C_{0} \nu=$ $\left(c_{0}, \nu\right)_{\mathcal{V}_{0}}, \forall \nu \in \mathcal{V}_{0}$, and $B_{0} \xi:=\xi b_{0}, \forall \xi \in \mathbb{R}$.

Assume that $\phi: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are two scalar-valued functions. Our aim is to study a system of indirect control, which is formally given as

$$
\begin{align*}
& \dot{\nu}=A_{0} \nu+b_{0}[\phi(t, z)+g(t)], \\
& \dot{z}=\left(c_{0}, \nu\right)_{\mathcal{V}_{0}}+d_{0}[\phi(t, z)+g(t)] . \tag{1}
\end{align*}
$$

Let us demonstrate how (1) can be written as a standard control system. Consider for this the Gelfand rigging $Y_{1} \subset Y_{0} \subset Y_{-1}$, in which

$$
\begin{equation*}
Y_{j}:=\mathcal{V}_{j} \times \mathbb{R}, \quad j=1,0,-1 \tag{2}
\end{equation*}
$$

The scalar product $(\cdot, \cdot)_{j}$ in $Y_{j}$ is introduced as
$\left(\left(\nu_{1}, z_{1}\right),\left(\nu_{2}, z_{2}\right)\right)_{j}:=\left(\nu_{1}, \nu_{2}\right) \mathcal{\nu}_{j}+z_{1} z_{2}$, where $\left(\nu_{1}, z_{1}\right),\left(\nu_{2}, z_{2}\right) \in$ $Y_{j}$ are arbitrary. The pairing between $Y_{-1}$ and $Y_{1}$ is defined for $(h, \xi) \in \mathcal{V}_{-1} \times \mathbb{R}=Y_{-1}$ and $(\nu, \varsigma) \in \mathcal{V}_{1} \times \mathbb{R}=Y_{1}$ through

$$
\begin{equation*}
((h, \xi),(\nu, \varsigma))_{-1,1}:=(h, \nu)_{\mathcal{V}_{-1}, \mathcal{V}_{1}}+\xi \varsigma . \tag{3}
\end{equation*}
$$

Let $b:=\left[\begin{array}{l}b_{0} \\ d_{0}\end{array}\right] \in Y_{-1}$ and $c:=\left[\begin{array}{l}0 \\ 1\end{array}\right] \in Y_{0}$. Suppose further that the operators $C \in \mathcal{L}\left(Y_{0}, \mathbb{R}\right)$ and $B \in \mathcal{L}\left(\mathbb{R}, Y_{-1}\right)$ are given as

$$
C y=(c, y)_{0}, \quad \forall y \in Y_{0}, \quad B \xi=\xi b, \quad \forall \xi \in \mathbb{R}
$$

and the operator $A \in \mathcal{L}\left(Y_{1}, Y_{-1}\right)$ is defined as

$$
A:=\left[\begin{array}{ll}
A_{0} & 0 \\
C_{0} & 0
\end{array}\right]
$$

Consider now the system

$$
\begin{equation*}
\dot{y}=A y+B[\phi(t, z)+g(t)], z=C y \tag{4}
\end{equation*}
$$

which is equivalent to (1) through $y=(\nu, z)$.
If $-\infty \leq T_{1}<T_{2} \leq+\infty$ are arbitrary, we define the norm for Bochner measurable functions in $L^{2}\left(T_{1}, T_{2} ; Y_{j}\right), j=1,0,-1$, by

$$
\begin{equation*}
\|y\|_{2, j}:=\left(\int_{T_{1}}^{T_{2}}\|y(t)\|_{j}^{2} d t\right)^{1 / 2} \tag{5}
\end{equation*}
$$

Let $\mathcal{W}\left(T_{1}, T_{2} ; Y_{1}, Y_{-1}\right)$ be the space of functions $y$ such that $y \in L^{2}\left(T_{1}, T_{2} ; Y_{1}\right)$ and $\dot{y} \in L^{2}\left(T_{1}, T_{2} ; Y_{-1}\right)$, equipped with the norm

$$
\begin{equation*}
\|y\|_{\mathcal{W}\left(T_{1}, T_{2} ; Y_{1}, Y_{-1}\right)}:=\left(\|y\|_{2,1}^{2}+\|\dot{y}\|_{2,-1}^{2}\right)^{1 / 2} . \tag{6}
\end{equation*}
$$

Let us introduce the following assumptions (A1) - (A6) about the operator $A_{0} \in \mathcal{L}\left(\mathcal{V}_{1}, \mathcal{V}_{-1}\right)$, the vectors $b_{0} \in \mathcal{V}_{-1}$ and $c_{0} \in \mathcal{V}_{0}$, and the functions $\phi$ and $g$.
(A1) For any $T>0$ and any
$\left(f_{1}, f_{2}\right) \in L^{2}\left(0, T ; \mathcal{V}_{-1} \times \mathbb{R}\right)$ the problem

$$
\begin{align*}
& \dot{\nu}=A_{0} \nu+f_{1}(t)  \tag{7}\\
& \dot{z}=\left(c_{0}, \nu\right)_{\nu_{0}}+f_{2}(t), \quad(\nu(0), z(0))=\left(\nu_{0}, z_{0}\right)
\end{align*}
$$

is well-posed, i.e. for arbitrary
$\left(\nu_{0}, z_{0}\right) \in Y_{0},\left(f_{1}, f_{2}\right) \in L^{2}\left(0, T ; \mathcal{V}_{-1} \times \mathbb{R}\right)$ there exists a unique solution $(\nu, z) \in \mathcal{W}\left(0, T ; Y_{1}, Y_{-1}\right)$ satisfying (7) in a variational sense and depending continuously on the initial data, i.e.

$$
\begin{align*}
& \|(\nu, z)\|_{\mathcal{W}\left(0, T ; Y_{1}, Y_{-1}\right)}^{2} \leq \\
& k_{1}\left\|\left(\nu_{0}, z_{0}\right)\right\|_{\mathcal{V}_{0} \times \mathbb{R}}^{2}+k_{2}\left\|\left(f_{1}, f_{2}\right)\right\|_{2,-1}^{2} \tag{8}
\end{align*}
$$

where $k_{1}>0$ and $k_{2}>0$ are some constants.
(A2) There is a $\lambda>0$ such that $A_{0}+\lambda I$ is a Hurwitz operator.
(A3) For any $T>0,\left(\nu_{0}, z_{0}\right) \in \mathcal{V}_{1} \times \mathbb{R},\left(\tilde{\nu}_{0}, \tilde{z}_{0}\right) \in \mathcal{V}_{1} \times \mathbb{R}$ and $\left(f_{1}, f_{2}\right) \in L^{2}\left(0, T ; \mathcal{V}_{1} \times \mathbb{R}\right)$ the solution of the direct problem (7) and the solution of the adjoint problem

$$
\begin{align*}
& \dot{\tilde{\nu}}=-\left(A_{0}^{+}+\lambda I\right) \tilde{\nu}+f_{1}(t) \\
& \dot{\tilde{z}}=-C_{0}^{+} \tilde{z}-\lambda \tilde{z}+f_{2}(t) \tag{9}
\end{align*}
$$

are strongly continuous in $t$ in the norm of $\mathcal{V}_{1} \times \mathbb{R}$.
(A4) The pair $\left(A_{0}, b_{0}\right)$ is $L^{2}$-controllable, i.e. for arbitrary $\nu_{0} \in \mathcal{V}_{0}$ there exists a control $\xi(\cdot) \in L^{2}(0, \infty ; \mathbb{R})$ such that the problem

$$
\dot{\nu}=A_{0} \nu+b_{0} \xi, \quad \nu(0)=\nu_{0}
$$

is well-posed in the variational sense on $(0, \infty)$.
Introduce by ( $c$ denotes the complexification)

$$
\chi(p)=\left(c_{0}^{c},\left(A_{0}^{c}-p I^{c}\right)^{-1} b_{0}^{c}\right)_{\mathcal{V}_{0}}, \quad p \in \rho\left(A_{0}^{c}\right)
$$

the transfer function of the triplet $\left(A_{0}^{c}, b_{0}^{c}, c_{0}^{c}\right)$.
(A5) Suppose $\lambda>0$ and $\kappa_{1}>0$ are parameters, where $\lambda$ is from (A2). Then:

$$
\begin{align*}
& \text { a) } \lambda d_{0}+\operatorname{Re}(-i \omega-\lambda) \chi(i \omega-\lambda)+ \\
& \kappa_{1}\left|\chi(i \omega-\lambda)-d_{0}\right|^{2} \leq 0, \quad \forall \omega \geq 0 \tag{10}
\end{align*}
$$

(A6) The function $\phi: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $\phi(t, 0)=0$, $\forall t \in \mathbb{R}$. The function $g: \mathbb{R} \rightarrow \mathbb{R}$ belongs to $L_{\text {loc }}^{2}(\mathbb{R} ; \mathbb{R})$. There are numbers $\kappa_{1}>0$ (from (A5)), $0 \leq \kappa_{2}<\kappa_{3}<+\infty, \beta_{1}<\beta_{2}$ and $\zeta_{2}<\zeta_{1}$ such that:

$$
\begin{equation*}
\text { a) } \quad \beta_{1}<g(t)<\beta_{2} \text {, } \tag{11}
\end{equation*}
$$

for a.a. $t$ from an arbitrary compact time interval;

$$
\begin{gather*}
\text { b) } \quad\left(\phi(t, z)+\beta_{i}\right)\left(z-\zeta_{i}\right) \leq \kappa_{1}\left(z-\zeta_{i}\right)^{2}, \quad i=1,2, \\
\forall t \in \mathbb{R}, \quad \forall z \in\left[\zeta_{2}, \zeta_{1}\right] ;  \tag{11a}\\
\text { c) } \quad \kappa_{2}\left(z_{1}-z_{2}\right)^{2} \leq\left(\phi\left(t, z_{1}\right)-\phi\left(t, z_{2}\right)\right)\left(z_{1}-z_{2}\right) \leq \\
\kappa_{3}\left(z_{1}-z_{2}\right)^{2}, \quad \forall t \in \mathbb{R}, \forall z_{1}, z_{2} \in\left[\zeta_{2}, \zeta_{1}\right] . \tag{11b}
\end{gather*}
$$

Theorem 1 Assume that for system (1) the hypotheses (A1) (A6) are satisfied. Then there exists a closed, positively invariant and convex set $\mathcal{G}$ such that

$$
\begin{align*}
& \left\{(\nu, z) \in \mathcal{V}_{1} \times \mathbb{R} \mid \nu=0, z \in\left[\zeta_{2}, \zeta_{1}\right]\right\} \subset \mathcal{G} \subset \\
& \left\{(\nu, z) \in \mathcal{V}_{1} \times \mathbb{R} \mid z \in\left[\zeta_{2}, \zeta_{1}\right]\right\} \tag{12}
\end{align*}
$$

Suppose that $Y_{1} \subset Y_{0} \subset Y_{-1}$ is a Gelfand rigging of $Y_{0},\|\cdot\|_{j},(\cdot, \cdot)_{j}$ are the corresponding norms and scalar products, respectively, and $(\cdot, \cdot)_{-1,1}$ is the pairing between $Y_{-1}$ and $Y_{1}$. Consider the linear system

$$
\begin{equation*}
\dot{y}=A y, \quad z=(c, y)_{0}, \tag{13}
\end{equation*}
$$

where $A \in \mathcal{L}\left(Y_{1}, Y_{-1}\right)$ and $c \in Y_{0}$.
Assume that for each $y_{0} \in Y_{0}$ there exists a unique solution $y\left(\cdot, y_{0}\right)$ of (13) in $\mathcal{W}(0, \infty)$ satisfying $y\left(0, y_{0}\right)=y_{0}$. In the sequel we need the following assumption.

Brusin, V. A. (1976). The Lur'e equations in Hilbert space and its solvability. Prikl. Math. Mekh. 40 (5), 947 - 955 . (in Russian)

Likhtarnikov, A. L. and V. A. Yakubovich (1976). The frequency theorem for equations of evolutionary type. Siberian Math. J. 17, 790-803.
(A7) The space $Y_{0}$ can be decomposed as $Y_{0}=Y_{0}^{+} \oplus Y_{0}^{-}$such that the following holds:
a) For each $y_{0} \in Y_{0}^{+}$we have $\lim _{t \rightarrow \infty} y\left(t, y_{0}\right)=0$.

For each $y_{0} \in Y_{0}^{-}$there exists a unique solution
$y_{-}(t)=y\left(t, y_{0}\right)$ of (13), defined on ( $-\infty, 0$ ), such that $\lim _{t \rightarrow-\infty} y_{-}(t)=0$ and $\left(c, y\left(t, y_{0}\right)\right)_{0}=0, \forall t \geq 0$, if and only if $y_{0}=0$.
b) For each $y_{0} \in Y_{0}^{+}$the equality
$\left(c, y\left(t, y_{0}\right)\right)_{0}=0, \forall t \leq 0$, holds if and only if $y_{0}=0$.
For each $y_{0} \in Y_{0}^{-}$the equality $\left(c, y\left(t, y_{0}\right)\right)_{0}=0, \forall t \leq 0$, holds if and only if $y_{0}=0$.
Lemma 1 Suppose that system (13) satisfies (A7) and there exists a linear continuous operator $P: Y_{0} \rightarrow Y_{0}, P^{*}=P$, such that for any $s \leq t$ and any solution $y\left(\cdot, y_{0}\right)$ of (13) we have with $V(y):=(y, P y)_{0}, y \in Y_{0}$,

$$
\begin{equation*}
V\left(y\left(t, y_{0}\right)\right)-V\left(y\left(s, y_{0}\right)\right) \leq-\int_{s}^{t}\left(c, y\left(\tau, y_{0}\right)\right)_{0}^{2} d \tau \tag{14}
\end{equation*}
$$

Then

$$
\begin{array}{r}
P_{\mid Y_{0}^{+}} \geq 0, \text { i.e., }(y, P y)_{0}>0 \\
\text { for all } y \in Y_{0}^{+} \backslash\{0\} \tag{15}
\end{array}
$$

and

$$
\begin{align*}
& P_{\mid Y_{0}^{-}} \leq 0, \text { i.e. }, \\
&(y, P y)_{0}<0  \tag{16}\\
& \text { for all } y \in Y_{0}^{-} \backslash\{0\} .
\end{align*}
$$

Assume that $Y$ is a Hilbert space with scalar product $(\cdot, \cdot)$. A cone in $Y$ is a set $\mathcal{C} \subset Y, \mathcal{C} \neq \varnothing$, such that $y \in \mathcal{C}, \alpha \in \mathbb{R}_{+}$imply that $\alpha y \in \mathcal{C}$. It is easy to see that a cone $\mathcal{C}$ in $Y$ is convex if and only if $y_{1}, y_{2} \in \mathcal{C}$ imply that $y_{1}+y_{2} \in \mathcal{C}$.

Suppose that $P \in \mathcal{L}(Y), P=P^{*}$. Then the set

$$
\mathcal{C}:=\{y \in Y \mid(y, P y) \leq 0\}
$$

is a cone which is called by us quadratic.
Assume that there is a decomposition $Y=Y^{+} \oplus Y^{-}$such that $P_{\mid Y^{+}} \geq 0$ and $P_{\mid Y^{-}} \leq 0$. Then the quadratic cone

$$
\{y \in Y \mid(y, P y) \leq 0\}
$$

is called by us quadratic cone of dimension $\operatorname{dim} Y^{-}$.
Lemma 2 Suppose that:

1) $Y_{1} \subset Y_{0} \subset Y_{-1}$ is a Gelfand rigging of the Hilbert space $Y_{0}$ with scalar products $(\cdot, \cdot)_{i}$, corresponding norms $\|\cdot\|_{i}, i=$ $1,0,-1$, and pairing $(\cdot, \cdot)_{-1}$, between $Y_{-1}$ and $Y_{1}$;
2) There is an operator
$P \in \mathcal{L}\left(Y_{-1}, Y_{0}\right) \cap \mathcal{L}\left(Y_{0}, Y_{1}\right)$, self-adjoint in $Y_{0}$ such that

$$
\mathcal{C}:=\left\{y \in Y_{0} \mid(y, P y)_{0} \leq 0\right\}
$$

is an 1-dimensional quadratic cone;
3) There are vectors $h \in Y_{-1}$ and $r \in Y_{0}$ such that

$$
\begin{equation*}
2(h, P y)_{-1,1}=(r, y)_{0}, \forall y \in Y_{1} \tag{17}
\end{equation*}
$$

and $\quad(h, r)_{-1,1}<0$.

Then we have

$$
\begin{equation*}
\operatorname{int} \mathcal{C} \cap\left\{y \in Y_{1} \mid(y, r)_{0}=0\right\}=\varnothing \tag{19}
\end{equation*}
$$

Blyagoz, Z.U. and G.A. Leonov (1978). Frequency criteria for stability in the large of nonlinear systems. Vestn. Leningr. Univers. 13, 18 - 23. (in Russian)

Leonov, G.A. and A.N. Churilov (1976). Frequency-domain conditions for boundedness of solutions of phase systems. Dynamics of systems, Meshvuz. Sb., Gorky 10, 3 - 20. (in Russian)
V. Reitmann (1982). Über die Beschränktheit der Lösungen nichtstationärer Phasensysteme. ZAA 1, 83-93.

Really, in the finite-dimensional case we have $Y_{1}=Y_{0}=Y_{-1}=$ $\mathbb{R}^{n},(\cdot, \cdot)_{-1,1}=(\cdot, \cdot)_{0}=(\cdot, \cdot)$ the Euclidean inner product and $P=P^{*}$, $\operatorname{det} P \neq 0$, a regular symmetric $n \times n$ matrix. Assumption (17) in Lemma 2 states that there are vectors $h, r \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
2(h, P y)=(r, y), \quad \forall y \in \mathbb{R}^{n} \tag{20}
\end{equation*}
$$

It follows from (20) that

$$
\begin{equation*}
2 h=P^{-1} r . \tag{21}
\end{equation*}
$$

Equation (21) shows that assumption (18) of Lemma 2 takes the form

$$
\begin{equation*}
\left(r, P^{-1} r\right)<0 \tag{22}
\end{equation*}
$$

If (22) is satisfied, it follows from Lemma 2 for the 1-dimensional quadratic cone
$\mathcal{C}=\left\{y \in \mathbb{R}^{n} \mid(y, P y) \leq 0\right\}$ that

$$
\begin{equation*}
\operatorname{int} \mathcal{C} \cap\left\{y \in \mathbb{R}^{n} \mid(y, r)=0\right\}=\varnothing \tag{23}
\end{equation*}
$$

(A8) The imbedding $\mathcal{V}_{1} \subset \mathcal{V}_{0}$ is compact.
(A9) The family of operators
$\{\mathcal{A}(t)\}_{t \in \mathbb{R}}, \mathcal{A}(t): Y_{1} \rightarrow Y_{-1}$, given by
$\mathcal{A}(t) \eta:=-A \eta-B \phi(t, C \eta), \forall t \in \mathbb{R}, \forall \eta \in Y_{1}$, is monotone on the segment $\left\{\eta \in Y_{1} \mid C \eta \in\left[\zeta_{2}, \zeta_{1}\right]\right\}$, i.e. for any $t \in \mathbb{R}$ we have

$$
\begin{align*}
& (\mathcal{A}(t) \eta-\mathcal{A}(t) \vartheta, \eta-\vartheta)_{-1,1} \geq 0, \\
& \forall \eta, \vartheta \in Y_{1}, \quad \text { such that } \quad C \eta, C \vartheta \in\left[\zeta_{2}, \zeta_{1}\right] . \tag{24}
\end{align*}
$$

Theorem 2 Assume that for system (1) the assumptions (A1) (A9) are satisfied. Then it holds:
a) For any $g \in B S^{2}(\mathbb{R} ; \mathbb{R})$ and any $\left(\nu_{0}, z_{0}\right) \in \mathcal{G}$, where $\mathcal{G}$ is the associated positively invariant set, there exists a solution $(\nu, z) \in \mathcal{W}\left(0, \infty ; \mathcal{V}_{1} \times \mathbb{R}, \mathcal{V}_{-1} \times \mathbb{R}\right)$ of (1) such that $(\nu(0), z(0))=\left(\nu_{0}, z_{0}\right)$.
b) For any $g \in B S^{2}(\mathbb{R} ; \mathbb{R})$ there exists for (1) a solution

$$
\begin{equation*}
\left(\nu_{*}, z_{*}\right) \in C_{b}\left(\mathbb{R} ; \mathcal{V}_{0} \times \mathbb{R}\right) \cap B S^{2}\left(\mathbb{R} ; \mathcal{V}_{1} \times \mathbb{R}\right) . \tag{25}
\end{equation*}
$$

(A10) Any continuous function $\phi$ which satisfies (11a) and (11b) has a continuous extension to a function $\tilde{\phi}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ which satisfies (11a) and (11b) for all $(t, z) \in \mathbb{R} \times \mathbb{R}$.

Theorem 3 Assume that for system (1) the assumptions (A1) (A10) are satisfied and in addition to this the following holds:
(i) The operator $\left[\begin{array}{cc}A_{0} & \kappa_{2} B_{0} \\ C_{0} & \kappa_{2} d_{0}\end{array}\right]$ from $\mathcal{L}\left(Y_{1}, Y_{-1}\right)$ is Hurwitz;
(ii) There exists a number $\epsilon>0$ such that

$$
\begin{equation*}
\frac{1}{\kappa_{3}-\kappa_{2}}+\operatorname{Re} \frac{\chi(i \omega)-d_{0}}{i \omega+\kappa_{2}\left(\chi(i \omega)-d_{0}\right)}>\epsilon, \forall \omega \in \mathbb{R} . \tag{26}
\end{equation*}
$$

Then we have:
a) For any $g \in B S^{2}(\mathbb{R} ; \mathbb{R})$ system (1) has a unique solution ( $\nu_{*}, w_{*}$ ) inside $\mathcal{G}$ which satisfies (25) and this solution is exponentially stable inside $\mathcal{G}$.
b) Let the families of functions
$\left\{\phi(\cdot, z) \mid z \in\left[\zeta_{2}, \zeta_{1}\right]\right\}$ and $\{\tilde{\phi}(\cdot, z) \mid z \in \mathcal{S}\}$, where $\tilde{\phi}$ is from (A9) and $\mathcal{S} \subset \mathbb{R}$ is an arbitrary bounded interval, be uniformly Bohr a.p. . Then for any $S^{2}$-a.p. forcing function $g$ the unique in $\mathcal{G}$ bounded and exponentially stable solution $\left(\nu_{*}, z_{*}\right)$ is Bohr a.p. .

## 2. Example

We consider the restricted boundary control problem for the temperature (Butkovskii, 1975)

$$
\begin{align*}
& \theta_{t}=\delta_{1} \theta_{x x}-\delta_{2} \theta, \quad \delta_{1}>0, \delta_{2}>0  \tag{27}\\
& \theta_{x_{l x=0}}=0, \theta_{x_{\mid x=1}}=\delta_{3}[\phi(t, w)+g(t)], \delta_{3} \in \mathbb{R} \\
& \dot{w}=\int_{0}^{1} \theta(x, t) k(x) d x+\delta_{4}[\phi(t, w)+g(t)] . \tag{28}
\end{align*}
$$

Here $k(\cdot)$ is a kernel function, $\quad \delta_{4}<0$,
$\phi(t, w)=w-\delta_{5}(t) w^{3}$ is a Duffing-type
nonlinearity, $\quad \delta_{5}(t) \geq 0$ a.e.

## Nonlinearity and forcing function:

$$
\begin{aligned}
& \phi(w)=w-\delta_{5} w^{3}, \delta_{5}>0 \\
& \phi=\Phi^{\prime}, \quad \Phi(w)=\frac{w^{2}}{2}-\frac{\delta_{5}}{4} w^{4} \quad \text { double-well potential }
\end{aligned}
$$



$$
\begin{aligned}
&-q_{1}=\phi\left(r_{1}\right) \\
& \zeta=-q_{2}+\kappa_{1}\left(w-r_{2}\right) \\
& r_{2}=-\frac{1}{\sqrt{3 \delta_{5}}}+\varepsilon \\
& r_{1}=\frac{1}{\sqrt{3 \delta_{5}}}-\varepsilon, \quad \varepsilon>0 \quad \text { small } \\
& q_{2}=-\phi\left(r_{2}\right), q_{1}=-\phi\left(r_{1}\right) \\
& \kappa_{1}=\frac{\delta_{2}^{2}}{4}
\end{aligned}
$$

Write (27), (28) as ODE in Hilbert space

$$
\begin{align*}
\dot{\nu} & =A_{0} \nu+B_{0}[\phi(t, w)+g(t)]  \tag{30}\\
\dot{w} & =C_{0} \nu+d_{0}[\phi(t, w)+g(t)], \tag{31}
\end{align*}
$$

$\mathcal{V}_{1}:=W^{1,2}(0,1), \quad \mathcal{V}_{0}:=L_{2}(0,1), \quad \mathcal{V}_{-1}=\mathcal{V}_{1}^{*}$, space of test state space dual space functions

$$
(\nu, \vartheta)_{1}:=\int_{0}^{1}\left[\nu \vartheta+\nu_{x} \vartheta_{x}\right] d x, \quad \nu, \vartheta \in \mathcal{V}_{1} .
$$

$A_{0}: \mathcal{V}_{1} \rightarrow \mathcal{V}_{-1}$ is given by

$$
\left(A_{0} \nu, \vartheta\right)=-\int_{0}^{1}\left[\delta_{1} \nu^{\prime}(x) \vartheta^{\prime}(x)+\delta_{2} \nu(x) \vartheta(x)\right] d x
$$

$B_{0}: \mathbb{R} \rightarrow \mathcal{V}_{-1} \quad$ (Control operator) is given through

$$
\left(B_{0} \xi, \nu\right)=\delta_{1} \xi \nu(1), \quad \forall \xi \in \mathbb{R}, \quad \forall \nu \in \mathcal{V}_{1},
$$

i.e. $B_{0}=\delta_{1} \delta(x-1)$ is Dirac's $\delta$-function concentrated at $x=1$. $C_{0}: \mathcal{V}_{0} \rightarrow \mathbb{R}$ (measurement operator) is given by

$$
C_{0} \nu:=\int_{0}^{1} k(x) \nu(x) d x, \quad \forall \nu \in \mathcal{V}_{0}
$$

## Variational solution of (30), (31)

A pair of functions $(\theta(x, t), w(t))$ is a weak solution of (27), (28) on $(0, T)$ if

$$
\begin{gather*}
\theta(\cdot, t) \in W^{1,2}(0,1), \quad w, \dot{w} \in L^{2}(0, T), \\
\int_{0}^{T}\left\{\int_{0}^{1}\left[\theta \eta_{t}-\left(\delta_{1} \theta_{x} \eta_{x}+\delta_{2} \theta \eta\right)\right] d x+\right. \\
\left.\delta_{1} \delta_{3}[\phi(t, w)+g(t)] \eta(1, t)\right\} d t=0,  \tag{32}\\
\int_{0}^{T}\left\{w(t) \zeta(t)+\left(\int_{0}^{1} \theta(x, t) k(x) d x+\right.\right. \\
\left.\left.\quad \delta_{4}[\phi(t, w)+g(t)]\right) \zeta(t)\right\} d t=0 \tag{33}
\end{gather*}
$$

$\forall$ smooth test function $\eta(x, t), \eta(x, 0)=\eta(x, 1)=0$,
$\forall$ smooth test function $\zeta(t), \zeta(0)=\zeta(T)=0$.
(A6):
Transfer function: $\chi(p)=\int_{0}^{1} \tilde{\theta}(x, p) d x$ where $\tilde{\theta}(x, p)$ is the solution of the BVP $\left(k(x) \equiv 1, \delta_{3}=1, \delta_{4}=-1, \delta_{5}(t) \equiv \delta_{5}\right)$ :

$$
\begin{aligned}
& p \tilde{\theta}=\delta_{1} \tilde{\theta}^{\prime \prime}-\delta_{2} \tilde{\theta} \\
& \tilde{\theta}_{\left.\right|_{x=0} ^{\prime}}^{\prime}=0, \quad \widetilde{\theta}_{\left.\right|_{x=1} ^{\prime}}^{\prime}=1 \\
\Rightarrow & \tilde{\theta}(x, p)=\frac{\cosh \sqrt{p+\delta_{2}} x}{\sqrt{p+\delta_{2}} \sinh \sqrt{p+\delta_{2}}}, \\
\Rightarrow \quad & \chi(p)=\frac{1}{\sqrt{p+\delta_{2}} \sinh \sqrt{p+\delta_{2}}} \\
& \int_{0}^{1} \cosh \sqrt{p+\delta_{2}} d x=\frac{1}{p+\delta_{2}}, \\
\Rightarrow & \text { sufficient to assume that }
\end{aligned}
$$

$$
|g(t)|<\frac{2}{3 \sqrt{3 \delta_{5}}} \quad \text { a.e. } t \in \mathbb{R}
$$

$$
\kappa_{2}=\phi^{\prime}\left(r_{1}\right), \kappa_{3}=1 \quad \Rightarrow \text { (A6) }
$$

$$
\chi(p)=\frac{1}{p+\delta_{2}}
$$

$$
\lambda \in\left(0, \delta_{2}\right) \quad \Rightarrow \text { (A2) }
$$

$$
\lambda^{2}-\delta_{2} \lambda+\kappa_{1} \leq 0 \quad \Rightarrow \text { (A5) }
$$



$$
\left.\delta_{2}^{2} \geq 4 \kappa_{1} \Rightarrow \mathbf{( A 3}\right)+(\mathbf{A} 6)--\rightarrow \text { cooling }
$$

