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1. Control systems in Lur’e form with a Duffing type
nonlinearity

Let V1 C Vo C V_1 be a Gelfand rigging of the real Hilbert space
Vo, i.e. a chain of Hilbert spaces with dense and continuous in-
clusions. Denote by (-,-)y, and || - ||y, = 1,0, —1, the scalar
product resp. norm in V;(j = 1,0,—1) and by (-, -)y_,.y, the pair-
ing between V_; and V;.

Let Ag € L(V1,V_1) be a linear operator,

bo € V_1 a generalized vector, cg € Vp a vector and do < O
a number. According to the vectors co and bp we introduce the
linear operators Co € L(Vo,R) and By € L(R,V_1) by Cov =
(co,v)y,, Vv € Vo, and Bo§ := &bp, V€ € R.

Assumethat ¢ : R xR — Rand g : R — R are two scalar-valued
functions. Our aim is to study a system of indirect control, which is
formally given as

v = Aov + bold(t, 2) + g(1)],
2 = (co,v)v, + dolo(t, 2) + g(1)]. (1)

Let us demonstrate how (1) can be written as a standard control
system. Consider for this the Gelfand rigging Y1 C Yo C Y_1, in
which

Y, =V, xR, 537=1,0,-1. (2)
The scalar product (-, -); in Yj is introduced as

((1/1, z1), (12, ZQ))j = (v1,v2)y,+2122, Where (v1, z1), (12, 22) €

Y, are arbitrary. The pairing between Y_; and Y7 is defined for
(h,§) e V.1 xR=Y_1and (v,¢) € V1 x R =Y through

((h,8),(v,6))-1,1:= (h,v)y, v, +&s. (3)

Let b:= [Zﬂ € Y_;and c:= m € Yo . Suppose further that the

operators C € L(Yy,R) and B € L(R,Y_;) are given as
Cy:(cay)oa \V/yEYO, Bgng, ngRa



and the operator A € £(Y1,Y_1) is defined as

A= [AO O] :
Co O
Consider now the system
y=Ay+ Blo(t,2) + g(0)], = =Cy, (4)

which is equivalent to (1) through y = (v, 2).

If —co < T1 < T> < o0 are arbitrary, we define the norm for
Bochner measurable functions in L2(Ty,7T%;Y;),j = 1,0,—1, by

1/2

T,
Iyll2y = ( / Hy(t)H?dt) . ©)

Let W(T1,1%;Y1,Y_1) be the space of functions y such that

y € L?(T1,T»;Y1) and y € L?(Ty1,T»;Y_1), equipped with the
norm

. : 1/2
lyllwenmvyy = (5 +19l5-1) " - (6)

Let us introduce the following assumptions (A1) — (A6) about the
operator Ag € L(V1,V_1), the vectors bg € V_1 and ¢g € Vg, and
the functions ¢ and g.

(A1) Forany T' > 0 and any
(fi, f2) € L2(0,T; V_1 x R) the problem

v = Aov + f1(¢), (7)
z = (co, Vv, + f2(t) ,  (¥(0),2(0)) = (vo, 20)
is well-posed, i.e. for arbitrary



(vo, z0) € Yo, (f1, f2) € L?(0,T;V_1 x R) there exists a unique
solution (v,z) € W(0,T;Y1,Y 1) satisfying (7) in a variational
sense and depending continuously on the initial data, i.e.

||(V7 Z)H}Q/v(o,T;yl,yfl) <
k1| (vo, 20) |5,xr + ka2l (f1, f2)115,-1 (8)
where k1 > 0 and k> > 0 are some constants.

(A2) There is a A > 0 such that Ag + \I is a Hurwitz operator.

(A3) Forany T" > 0, (vo0,20) € V1 x R, (Pp,20) € V1 x R and
(f1, f2) € L?(0,T; V1 x R) the solution of the direct problem (7)
and the solution of the adjoint problem

b= —(AT + XD+ f(t)
F=-Cfz— Az + fo(t) (9)
are strongly continuous in t in the norm of V1 x R.

(A4) The pair (Ao, bo) is L?-controllable, i.e. for arbitrary vo € Vg
there exists a control £ (1) € L?(0, oo; R) such that the problem

v = Aov+bof, v(0)=ro

is well-posed in the variational sense on (0, o) .

Introduce by (c denotes the complexification)
x(p) = (c§, (A5 = pI9) 71 b5),, , € p(Ap)

the transfer function of the triplet (A§, b5, c§) .

(A5) Suppose A > 0 and k1 > O are parameters, where X is from
(A2). Then:

a) Mdo + Re (—iw — M) x(iw — N+
k1| xGiw—X\) —do|? <0, Vw>0. (10)



(A6) The function ¢ : R x R — R is continuous and ¢(¢,0) = 0O,
V¢ € R. The function g : R — R belongs to L2 (R ; R). There are
numbers k1 > 0O (from (A5)), 0 < ko < kK3 < 400,81 < B> and
(2 < (1 such that:

a) (1 <g(t) <p2, (11)

for a.a. t from an arbitrary compact time interval ;

b) (Qb(t, Z) + /61)(2 _ CZ) S KJI(Z - Ci)Qa 1= 1? 27

VteR, Vze [, ]; (11a)

¢) ko(z1— 22)° < (¢(t, 21) — ¢(t,22)) (21 — 22) <

l€3(21—22)2, VteR, Vz1,20 € [(2,(1] . (11b)

Theorem 1 Assume that for system (1) the hypotheses (A1) —
(AB) are satisfied. Then there exists a closed, positively invariant
and convex set G such that

{(v,z) eVi xR|v=0,z€[(C]}CGC
{(v,2) e Vi xRz € [, (1]} (12)

Suppose that Y1 C Yo C Y_1 is a Gelfand rigging of Yo, || - ||, (-, -);
are the corresponding norms and scalar products, respectively,
and (-,-)_11 is the pairing between Y_; and Y;. Consider the
linear system

y:Aya Z:(Cay)07 (13)
where A € £(Y1,Y_1) and ¢ € Yb.

Assume that for each yo € Yp there exists a unique solution y (-, yo)
of (13) in W(0, oo) satisfying y(0, yo) = yo. In the sequel we need
the following assumption.



Brusin, V. A. (1976). The Lur’e equations in Hilbert space and its
solvability. Prikl. Math. Mekh. 40 (5), 947 — 955. (in Russian)
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(A7) The space Y; can be decomposed as Yy = Y;" @ Y, such
that the following holds:

a) For each yo € Y;" we have lim y(t,y0) = O.
—00

For each yo € Y there exists a unique solution
y—(t) = y(t,yo) of (13), defined on (—oo,0), such that
lim y_(¢t) = 0 and (¢,y(t,y0))o = 0,Vt > 0, if and

t——00

only if yo = O.

b) For each yo € Y;' the equality
(c,y(t,y0))o =0, Vt <0, holds ifand only if yo = 0.
For each yo € Y, the equality (c,y(t,y0))o = 0, Vt < 0,
holds if and only if yo = O.

Lemma 1 Suppose that system (13) satisfies (A7) and there
exists a linear continuous operator P : Yo — Yo, P* = P, such
that for any s < t and any solution y(-,yo) of (13) we have with

V(y) L= (y,Py)O,y S Y07

V(y(t,y0)) — V(y(s,0)) < — / (c,y(ro))3 dr.  (14)

Then
Py+ >0, ie., (y,Py)o>0
forall y e Y;\{0} (15)
and
Py <0, ie., (y,Py)o <0
forall y e Y;\{0}. (16)



Assume that Y is a Hilbert space with scalar product (-, -). A cone
inYisasetC C Y,C # &, suchthaty € C,a € Ry imply that
ay € C. Itis easy to see that a cone C in Y is convex if and only if
y1,y2 € C imply that y1 + y> € C.

Suppose that P € £L(Y), P = P*. Then the set
C:={yeY|(y,Py) <0}

is a cone which is called by us quadratic.

Assume that there is a decomposition Y = YT ¢ Y~ such that
Py+ > 0and Py < 0. Then the quadratic cone

{y € Y| (y,Py) <0}
is called by us quadratic cone of dimension dim Y —.

Lemma 2 Suppose that:

1) Y1 C Yo C Y_1 is a Gelfand rigging of the Hilbert space Yo
with scalar products (-, -),, corresponding norms || - ||;,i =
1,0,—1, and pairing (-,-)_1, betweenY_1 and Y1;

2) There is an operator
P e L(Y_1,Yy) N L(Yy, Y1), self-adjoint in Yo such that

C:={yeYo|(y,Py)o <0}

is an 1-dimensional quadratic cone;

3) There are vectors h € Y_1 andr € Yy such that
2 (hapy)—l,l — (r7y)07 \V/y S Yl (17)

and (h, ?“)_1,1 < 0. (18)



Then we have
intCN{yeY1|(y,r)o=0}=9. (19)
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Really, in the finite-dimensional case we have Y1 = Yo = Y_1 =
R™ (,-)-11 = (-,)o = (-,-) the Euclidean inner product and
P = P*, det P # 0, a regular symmetric n x n matrix. Assump-
tion (17) in Lemma 2 states that there are vectors h,r € R™ such
that

2(h,Py) = (r,y), VyeR". (20)
It follows from (20) that
2h =P lr. (21)
Equation (21) shows that assumption (18) of Lemma 2 takes the
form
(r,P"r) <0, (22)

If (22) is satisfied, it follows from Lemma 2 for the 1-dimensional
quadratic cone
C = {y € R"|(y, Py) < 0} that

intCN{y eR"|(y,7r) =0} =9 . (23)

(A8) The imbedding V1 C Vg is compact.



(A9) The family of operators

{A(t) }ter, A(t) : Y1 — Y_1, given by

A(t)n := —An— Bo¢(t,Cn),Vt € R,Vn € Y1, is monotone on the
segment {n € Y1 |Cn € [{2,(1]}, i.e. for any ¢t € R we have

(A(t)n — A)d,n—9)-11 >0,
Vn,9 €Yy, suchthat Cn,CY € [(2, (1] . (24)

Theorem 2 Assume that for system (1) the assumptions (A1) —
(A9) are satisfied. Then it holds:

a) For any g € BS?(R;R) and any (vo,20) € G, where G is the
associated positively invariant set, there exists a solution

(v,z) € W(0,0; V1 x R,V_1 x R) of (1) such that

(v(0),2(0)) = (o, 20).

b) For any g € BS?(R; R) there exists for (1) a solution
(v, 2¢) € Co(R; Vo x R) N BS?(R; V1 x R). (25)

(A10) Any continuous function ¢ which satisfies (11a) and (11b)

has a continuous extension to a function¢ : R x R — R which
satisfies (11a) and (11b) for all (¢,2) € R x R.

Theorem 3 Assume that for system (1) the assumptions (A1) —
(A10) are satisfied and in addition to this the following holds:

Ao k2Bo

(i) The operator[ Co  riadg

] from L(Y1,Y_1) is Hurwitz;

(i) There exists a number ¢ > 0 such that

x (iw) — do
o tRe s T Ve e R, (29




Then we have:

a) Forany g € BS?(R; R) system (1) has a unique solution (v, w.)
inside G which satisfies (25) and this solution is exponentially sta-
ble inside G.

b) Let the families of functions _
{6(,2) |z € [¢2, (1]} and {&(-, 2) | = € S}, where ¢ is from (A9)
and S C R is an arbitrary bounded interval, be uniformly Bohr a.p. .
Then for any S?-a.p. forcing function g the unique in G bounded
and exponentially stable solution (v., z.) is Bohr a.p. .

2. Example

We consider the restricted boundary control problem for the tem-
perature (Butkovskii, 1975)
9t=519m;—529, 51>O,52>O (27)
93’3\95:0 =0, 95%:1 — 53[¢(t7w) + g(t)] ) 03 € Ra

1
i = /O 0(2,t) k(z) de + Salo(t,w) + g0 . (28)

Here k(-) is a kernel function, 64 < O,
H(t, w) = w — 85(t)w> is a Duffing-type (29)
nonlinearity, ds(t) > 0 a.e.

Nonlinearity and forcing function:

p(w) = w — dsw>, d5 > O
w2 55 .
p=>, Pd(w)= - - Zw“ double-well potential
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Write (27), (28) as ODE in Hilbert space

v = Aov + Bo[¢(t, w) + g(t)] (30)
w = Cov + do[o(t, w) + g(8)] , (31)



Vi = WhH2(0,1), Vo:=L»(0,1), V_1=V;,

space of test state space dual space
functions (w.r.t. Vo)
1
(v, 9)1 :=/ [V + v,9,] dx, v, € V1.
0

Ao : V1 — V_j is given by
1

(Agv, ) = —/ [610 (2)Y (z) + dov(z)V(z)] dx .
0

Bo:R — VY_1 (Control operator) is given through
(BO£7V)251€V(1)7 ngRv \V/VEV1,

i.e. Bo = §16(x — 1) is Dirac’s §-function concentrated at x = 1.

Co : Vo — R (measurement operator) is given by
1
Cov = / k(x)v(x)dr, Yv e ).
0

Variational solution of (30), (31)

A pair of functions (6(x,t),w(t)) is a weak solution of (27), (28)

on (0,7) if
0(,t) € WH2(0,1),  w,w € L?*(0,T),

T 1
/ { / [0 — (6102m5 + 620m)] dx +
0 0
0103[p(t,w) + g(t)] n (1,t)}dt —0,
r 1
/O {w(t)C(t) + (/O 0(z, k() de +
salé(t,w) +9(M]) ¢ (D} dt =0,

vV smooth test function n(x,t), n(x,0) = n(x,1) =0,

vV smooth test function ¢(¢), ((0) ={(T) =0.



(A6):

1

Transfer function: x(p) = / 0(xz, p) dx where (x,p) is the
0
solution of the BVP (k(x) = 1,63 =1, 64 = —1, 65(t) = 5) :

pf =60 — 60,

9‘/20 = O, §|;:1 — 1 .
- cosh+/p—+ dox
= 0(z,p) = : ,
Vp + d2sinh /p + 42
1
=

XP) = s o T 0,
1
/COSh p—+ dodxr =
0

= sufficient to assume that

1
p+ 62

2
3v39s

1g(t)] < aetelR.

Ko = qb/ (7“1), ky =1 = (AG)
1

p+ 02
A€ (0,62) = (A2)

A2 — A+ k1 <0 = (A5)

x(p) =



[

Or = 01020 — 020 | | — 20
—020 _ cooling
heating
r=1 N

w —(5§,w3 +g(t)
o(w

63 > 41| = (A3)+ (A6)--» cooling

condition



