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1. Control systems in Lur’e form with a Duffing type
nonlinearity

Let V1 ⊂ V0 ⊂ V−1 be a Gelfand rigging of the real Hilbert space
V0, i.e. a chain of Hilbert spaces with dense and continuous in-
clusions. Denote by (·, ·)Vj

and ‖ · ‖Vj
, j = 1,0,−1, the scalar

product resp. norm in Vj(j = 1,0,−1) and by (·, ·)V−1,V1
the pair-

ing between V−1 and V1.

Let A0 ∈ L(V1,V−1) be a linear operator,
b0 ∈ V−1 a generalized vector, c0 ∈ V0 a vector and d0 < 0
a number. According to the vectors c0 and b0 we introduce the
linear operators C0 ∈ L(V0, R) and B0 ∈ L(R,V−1) by C0ν =
(c0, ν)V0

, ∀ ν ∈ V0, and B0ξ := ξb0, ∀ξ ∈ R.

Assume that φ : R × R → R and g : R → R are two scalar-valued
functions. Our aim is to study a system of indirect control, which is
formally given as

ν̇ = A0ν + b0[φ(t, z) + g(t)] ,

ż = (c0, ν)V0
+ d0[φ(t, z) + g(t)] . (1)

Let us demonstrate how (1) can be written as a standard control
system. Consider for this the Gelfand rigging Y1 ⊂ Y0 ⊂ Y−1, in
which

Yj := Vj × R , j = 1,0,−1 . (2)
The scalar product (·, ·)j in Yj is introduced as(
(ν1, z1), (ν2, z2)

)
j
:= (ν1, ν2)Vj

+z1z2, where (ν1, z1), (ν2, z2) ∈
Yj are arbitrary. The pairing between Y−1 and Y1 is defined for
(h, ξ) ∈ V−1 × R = Y−1 and (ν, ς) ∈ V1 × R = Y1 through

((h, ξ), (ν, ς))−1,1 := (h, ν)V−1,V1
+ ξ ς . (3)

Let b :=
[

b0

d0

]
∈ Y−1 and c :=

[0
1

] ∈ Y0 . Suppose further that the

operators C ∈ L(Y0, R) and B ∈ L(R, Y−1) are given as

Cy = (c, y)0 , ∀ y ∈ Y0 , Bξ = ξb , ∀ ξ ∈ R ,



and the operator A ∈ L(Y1, Y−1) is defined as

A :=

[
A0 0

C0 0

]
.

Consider now the system

ẏ = Ay + B [φ(t, z) + g(t)] , z = Cy , (4)

which is equivalent to (1) through y = (ν, z).

If −∞ ≤ T1 < T2 ≤ +∞ are arbitrary, we define the norm for
Bochner measurable functions in L2(T1, T2;Yj), j = 1,0,−1, by

‖y‖2,j :=

(∫ T2

T1

‖y(t)‖2
j dt

)1/2

. (5)

Let W(T1, T2;Y1, Y−1) be the space of functions y such that

y ∈ L2(T1, T2;Y1) and ẏ ∈ L2(T1, T2;Y−1), equipped with the
norm

‖y‖W(T1,T2;Y1,Y−1) :=
(‖y‖2

2,1 + ‖ẏ‖2
2,−1

)1/2
. (6)

Let us introduce the following assumptions (A1) – (A6) about the
operator A0 ∈ L(V1,V−1), the vectors b0 ∈ V−1 and c0 ∈ V0, and
the functions φ and g.

(A1) For any T > 0 and any

(f1, f2) ∈ L2(0, T ;V−1 × R) the problem

ν̇ = A0ν + f1(t) , (7)
ż = (c0, ν)V0

+ f2(t) , (ν(0), z(0)) = (ν0, z0)

is well-posed, i.e. for arbitrary



(ν0, z0) ∈ Y0, (f1, f2) ∈ L2(0, T ;V−1 × R) there exists a unique
solution (ν, z) ∈ W(0, T ;Y1, Y−1) satisfying (7) in a variational
sense and depending continuously on the initial data, i.e.

‖(ν, z)‖2
W(0,T ;Y1,Y−1)

≤
k1‖(ν0, z0)‖2

V0×R
+ k2‖(f1, f2)‖2

2,−1 , (8)

where k1 > 0 and k2 > 0 are some constants.

(A2) There is a λ > 0 such that A0 + λI is a Hurwitz operator .

(A3) For any T > 0, (ν0, z0) ∈ V1 × R, (ν̃0, z̃0) ∈ V1 × R and
(f1, f2) ∈ L2(0, T ;V1 × R) the solution of the direct problem (7)
and the solution of the adjoint problem

˙̃ν = −(A+
0 + λ I)ν̃ + f1(t)

˙̃z = −C+
0 z̃ − λ z̃ + f2(t) (9)

are strongly continuous in t in the norm of V1 × R .

(A4) The pair (A0, b0) is L2-controllable, i.e. for arbitrary ν0 ∈ V0

there exists a control ξ (·) ∈ L2(0,∞;R) such that the problem

ν̇ = A0ν + b0ξ , ν(0) = ν0

is well-posed in the variational sense on (0,∞) .

Introduce by (c denotes the complexification)

χ(p) =
(
cc
0, (A

c
0 − pIc)−1 bc

0

)
V0

, p ∈ ρ(Ac
0)

the transfer function of the triplet (Ac
0, b

c
0, c

c
0) .

(A5) Suppose λ > 0 and κ1 > 0 are parameters, where λ is from
(A2). Then:

a) λd0 + Re (−iω − λ)χ(iω − λ)+

κ1 |χ(iω − λ) − d0 |2 ≤ 0 , ∀ω ≥ 0 . (10)



(A6) The function φ : R × R → R is continuous and φ(t,0) = 0,
∀ t ∈ R. The function g : R → R belongs to L2

loc(R ;R). There are
numbers κ1 > 0 (from (A5)), 0 ≤ κ2 < κ3 < +∞, β1 < β2 and
ζ2 < ζ1 such that:

a) β1 < g(t) < β2 , (11)

for a.a. t from an arbitrary compact time interval ;

b) (φ(t, z) + βi)(z − ζi) ≤ κ1(z − ζi)
2, i = 1,2 ,

∀ t ∈ R, ∀ z ∈ [ζ2, ζ1] ; (11a)

c) κ2(z1 − z2)
2 ≤ (φ(t, z1) − φ(t, z2))(z1 − z2) ≤

κ3(z1 − z2)
2 , ∀ t ∈ R, ∀ z1, z2 ∈ [ζ2, ζ1] . (11b)

Theorem 1 Assume that for system (1) the hypotheses (A1) –
(A6) are satisfied. Then there exists a closed, positively invariant
and convex set G such that

{(ν, z) ∈ V1 × R | ν = 0, z ∈ [ζ2, ζ1]} ⊂ G ⊂
{(ν, z) ∈ V1 × R | z ∈ [ζ2, ζ1]} . (12)

Suppose that Y1 ⊂ Y0 ⊂ Y−1 is a Gelfand rigging of Y0, ‖·‖j, (·, ·)j

are the corresponding norms and scalar products, respectively,
and (·, ·)−1,1 is the pairing between Y−1 and Y1. Consider the
linear system

ẏ = Ay , z = (c, y)0 , (13)
where A ∈ L(Y1, Y−1) and c ∈ Y0.

Assume that for each y0 ∈ Y0 there exists a unique solution y(·, y0)
of (13) in W(0,∞) satisfying y(0, y0) = y0. In the sequel we need
the following assumption.
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(A7) The space Y0 can be decomposed as Y0 = Y +
0 ⊕ Y −

0 such
that the following holds:

a) For each y0 ∈ Y +
0 we have lim

t→∞ y(t, y0) = 0.

For each y0 ∈ Y −
0 there exists a unique solution

y−(t) = y(t, y0) of (13), defined on (−∞,0), such that
lim

t→−∞ y−(t) = 0 and (c, y(t, y0))0 = 0, ∀ t ≥ 0 , if and

only if y0 = 0.

b) For each y0 ∈ Y +
0 the equality

(c, y(t, y0))0 = 0, ∀ t ≤ 0, holds if and only if y0 = 0 .
For each y0 ∈ Y −

0 the equality (c, y(t, y0))0 = 0, ∀ t ≤ 0,
holds if and only if y0 = 0 .

Lemma 1 Suppose that system (13) satisfies (A7) and there
exists a linear continuous operator P : Y0 → Y0, P ∗ = P , such
that for any s ≤ t and any solution y(·, y0) of (13) we have with
V (y) := (y, Py)0, y ∈ Y0,

V (y(t, y0)) − V (y(s, y0)) ≤ −
∫ t

s

(c, y(τ, y0))
2
0 dτ . (14)

Then

P|Y +
0
≥ 0 , i.e. , (y, Py)0 > 0

for all y ∈ Y +
0 \{0} (15)

and

P|Y −
0
≤ 0 , i.e. , (y, Py)0 < 0

for all y ∈ Y −
0 \{0} . (16)



Assume that Y is a Hilbert space with scalar product (·, ·). A cone
in Y is a set C ⊂ Y, C �= ∅, such that y ∈ C, α ∈ R+ imply that
αy ∈ C. It is easy to see that a cone C in Y is convex if and only if
y1, y2 ∈ C imply that y1 + y2 ∈ C.

Suppose that P ∈ L(Y ), P = P ∗. Then the set

C := {y ∈ Y | (y, Py) ≤ 0}
is a cone which is called by us quadratic.

Assume that there is a decomposition Y = Y + ⊕ Y − such that
P|Y + ≥ 0 and P|Y − ≤ 0. Then the quadratic cone

{y ∈ Y | (y, Py) ≤ 0}
is called by us quadratic cone of dimension dimY −.

Lemma 2 Suppose that:

1) Y1 ⊂ Y0 ⊂ Y−1 is a Gelfand rigging of the Hilbert space Y0

with scalar products (·, ·)i, corresponding norms ‖ · ‖i, i =
1,0,−1, and pairing (·, ·)−1, between Y−1 and Y1;

2) There is an operator
P ∈ L(Y−1, Y0) ∩ L(Y0, Y1), self-adjoint in Y0 such that

C := {y ∈ Y0 | (y, Py)0 ≤ 0}

is an 1-dimensional quadratic cone;

3) There are vectors h ∈ Y−1 and r ∈ Y0 such that

2 (h, Py)−1,1 = (r, y)0 , ∀ y ∈ Y1 (17)

and (h, r)−1,1 < 0 . (18)



Then we have

int C ∩ {y ∈ Y1 | (y, r)0 = 0} = ∅ . (19)

Blyagoz, Z.U. and G.A. Leonov (1978). Frequency criteria for sta-
bility in the large of nonlinear systems. Vestn. Leningr. Univers.
13, 18 – 23. (in Russian)
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Really, in the finite-dimensional case we have Y1 = Y0 = Y−1 =
Rn, (·, ·)−1,1 = (·, ·)0 = (·, ·) the Euclidean inner product and
P = P ∗, detP �= 0, a regular symmetric n × n matrix. Assump-
tion (17) in Lemma 2 states that there are vectors h, r ∈ Rn such
that

2 (h, Py) = (r, y) , ∀ y ∈ R
n . (20)

It follows from (20) that

2h = P−1r . (21)

Equation (21) shows that assumption (18) of Lemma 2 takes the
form

(r, P−1r) < 0 . (22)
If (22) is satisfied, it follows from Lemma 2 for the 1-dimensional
quadratic cone
C = {y ∈ Rn|(y, Py) ≤ 0} that

int C ∩ {y ∈ R
n | (y, r) = 0} = ∅ . (23)

(A8) The imbedding V1 ⊂ V0 is compact.



(A9) The family of operators
{A(t)}t∈R,A(t) : Y1 → Y−1, given by
A(t)η := −Aη−Bφ(t, Cη),∀t ∈ R, ∀η ∈ Y1, is monotone on the
segment {η ∈ Y1 |Cη ∈ [ζ2, ζ1]}, i.e. for any t ∈ R we have

(A(t)η −A(t)ϑ, η − ϑ)−1,1 ≥ 0 ,

∀ η, ϑ ∈ Y1 , such that Cη, Cϑ ∈ [ζ2, ζ1] . (24)

Theorem 2 Assume that for system (1) the assumptions (A1) –
(A9) are satisfied. Then it holds:

a) For any g ∈ BS2(R;R) and any (ν0, z0) ∈ G, where G is the
associated positively invariant set, there exists a solution
(ν, z) ∈ W(0,∞;V1 × R,V−1 × R) of (1) such that
(ν(0), z(0)) = (ν0, z0).

b) For any g ∈ BS2(R;R) there exists for (1) a solution

(ν∗, z∗) ∈ Cb(R ;V0 × R) ∩ BS2(R;V1 × R) . (25)

(A10) Any continuous function φ which satisfies (11a) and (11b)
has a continuous extension to a function ˜̃φ : R × R → R which
satisfies (11a) and (11b) for all (t, z) ∈ R × R.

Theorem 3 Assume that for system (1) the assumptions (A1) –
(A10) are satisfied and in addition to this the following holds:

(i) The operator
[

A0 κ2B0

C0 κ2d0

]
from L(Y1, Y−1) is Hurwitz;

(ii) There exists a number ε > 0 such that

1

κ3 − κ2
+ Re

χ(iω) − d0

iω + κ2(χ(iω) − d0)
> ε, ∀ω ∈ R . (26)



Then we have:

a) For any g ∈ BS2(R;R) system (1) has a unique solution (ν∗, w∗)
inside G which satisfies (25) and this solution is exponentially sta-
ble inside G.

b) Let the families of functions
{φ(·, z) | z ∈ [ζ2, ζ1]} and {φ̃(·, z) | z ∈ S}, where φ̃ is from (A9)
and S ⊂ R is an arbitrary bounded interval, be uniformly Bohr a.p. .
Then for any S2-a.p. forcing function g the unique in G bounded
and exponentially stable solution (ν∗, z∗) is Bohr a.p. .

2. Example

We consider the restricted boundary control problem for the tem-
perature (Butkovskii, 1975)

θt = δ1θxx − δ2 θ , δ1 > 0, δ2 > 0 (27)
θx|x=0

= 0 , θx|x=1
= δ3[φ(t, w) + g(t)] , δ3 ∈ R ,

ẇ =

∫ 1

0
θ(x, t) k(x) dx + δ4[φ(t, w) + g(t)] . (28)

Here k(·) is a kernel function, δ4 < 0 ,

φ(t, w) = w − δ5(t)w
3 is a Duffing-type (29)

nonlinearity, δ5(t) ≥ 0 a.e.

Nonlinearity and forcing function:

φ(w) = w − δ5w
3 , δ5 > 0

φ = Φ′ , Φ(w) =
w2

2
− δ5

4
w4 double-well potential



ζ

Φ

w−
√

2
δ5

√
2
δ5

ζ
−q1 = φ(r1) ζ = −q1+κ1(w−r1)

r2 r1 w

−q2 = φ(r2) φ

ζ = −q2 + κ1(w − r2)

r2 = − 1√
3 δ5

+ ε

r1 =
1√
3 δ5

− ε , ε > 0 small

q2 = −φ(r2) , q1 = −φ(r1)

κ1 =
δ2
2

4

Write (27), (28) as ODE in Hilbert space

ν̇ = A0ν + B0[φ(t, w) + g(t)] (30)
ẇ = C0ν + d0[φ(t, w) + g(t)] , (31)



V1 := W 1,2(0,1) , V0 := L2(0,1) , V−1 = V∗
1 ,

space of test state space dual space
functions (w.r.t. V0)

(ν, ϑ)1 :=

∫ 1

0
[νϑ + νxϑx] dx , ν, ϑ ∈ V1 .

A0 : V1 → V−1 is given by

(A0ν, ϑ) = −
∫ 1

0
[δ1ν

′(x)ϑ′(x) + δ2ν(x)ϑ(x)] dx .

B0 : R → V−1 (Control operator) is given through

(B0 ξ, ν) = δ1ξν(1) , ∀ ξ ∈ R , ∀ν ∈ V1 ,

i.e. B0 = δ1δ(x − 1) is Dirac’s δ-function concentrated at x = 1 .
C0 : V0 → R (measurement operator) is given by

C0ν :=

∫ 1

0
k(x)ν(x)dx , ∀ν ∈ V0.

Variational solution of (30), (31)

A pair of functions (θ(x, t), w(t)) is a weak solution of (27), (28)
on (0, T ) if

θ(·, t) ∈ W 1,2(0,1) , w, ẇ ∈ L2(0, T ) ,∫ T

0

{ ∫ 1

0
[θηt − (δ1θxηx + δ2θη)] dx +

δ1δ3[φ(t, w) + g(t)] η (1, t)
}

dt = 0 , (32)∫ T

0

{
w(t)ζ(t) +

( ∫ 1

0
θ(x, t)k(x) dx +

δ4[φ(t, w) + g(t)]
)

ζ (t)
}

dt = 0 , (33)

∀ smooth test function η(x, t), η(x,0) = η(x,1) = 0 ,

∀ smooth test function ζ(t), ζ(0) = ζ(T ) = 0 .



(A6):

Transfer function: χ(p) =

∫ 1

0
θ̃(x, p) dx where θ̃(x, p) is the

solution of the BVP (k(x) ≡ 1, δ3 = 1, δ4 = −1, δ5(t) ≡ δ5) :

p θ̃ = δ1θ̃
′′ − δ2θ̃ ,

θ̃
′

|x=0
= 0, θ̃

′

|x=1
= 1 .

⇒ θ̃(x, p) =
cosh

√
p + δ2 x√

p + δ2 sinh
√

p + δ2
,

⇒ χ(p) =
1√

p + δ2 sinh
√

p + δ2∫ 1

0
cosh

√
p + δ2 dx =

1

p + δ2
,

⇒ sufficient to assume that

|g(t)| <
2

3
√

3 δ5
a.e. t ∈ R .

κ2 = φ′ (r1), κ3 = 1 ⇒ (A6)

χ(p) =
1

p + δ2

λ ∈ (0, δ2) ⇒ (A2)
λ2 − δ2λ + κ1 ≤ 0 ⇒ (A5)



x = 0

θt = δ1θxx − δ2θ − δ2θ

−δ2θ cooling

heating

x = 1

w − δ5w
3︸ ︷︷ ︸

φ(w)

+g(t)

δ2
2 ≥ 4κ1 ⇒ (A3) + (A6)��� cooling

condition


