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1. Evolutionary variational inequalities

Suppose that �� is a real Hilbert space with ��� ��� and � � �� as
scalar product resp. norm. Suppose also that � � ���� � �� �
�� is an unbounded densely defined linear operator. The Hilbert
space �� is defined as ���� equipped with the scalar product

��� ��� �� ���� ����� ��� � ����� � �� � � ���� � (1)

where � � ���� � � ����� the resolvent set of �) is an arbitrary
but fixed number the existence of which we assume.

The Hilbert space ��� is by definition the completion of �� with
respect to the norm ����� �� ���� ��������. Thus we have the
dense and continuous imbedding

�� � �� � ��� (2)

which is called Hilbert space rigging structure (Yu. M. Berezanskii,
1965). The duality pairing ��� ������ on ��� � �� is the unique ex-
tension by continuity of the functionals ��� ��� with � � �� onto
���� If 	 
 � is an arbitrary number we define the norm for
Bochner measurable functions in����� 	 ����� � � ������ through

������ ��

� ��
�

������� �

����

� (3)

Let 	� be the space of functions ���� � ����� 	 ���� for which
����� � ����� 	 ������ equipped with the norm

��������
��

�
���������� � � �����������

����
� (4)

Assume that � and� are two other real Hilbert spaces with scalar
products ��� ��� � ��� ��� and norms � � �� � � � �� � respectively.

Introduce the linear continuous operators

� � �� � ��� � � � � � ��� � � � �� �� � (5)



(� from above) and define the set-valued map

� � �� �� � 	� (6)

and the map

� � �� � �� � (7)

Consider the evolutionary variational inequality with set-valued non-
linearity

� �� ��� ���� � � ������ � ����� ���� 
 � � � � � �� �
(8)

��� � ���� � ��� � ��� ���� � ���� � �� � �� � (9)

G. Duvant and J.-L. Lions (1976), W. Han and M. Sofonea (2000),
K.L. Kuttler and M. Shillor (1999)

Definition 1.1 A function ���� � 	� � ���� 	 ���� is said to be
a solution of (8), (9) on ��� 	� if there exists a function ���� �
����� 	 ��� such that for a.a.  � ��� 	� the inequality (8), (9) is
satisfied and

� �
�
������� � ��� The pair ����� ����� is called

a response of (8), (9); ���� is an associated selection.

Suppose that � and � are two quadratic forms on �� � � . The
class � �� ��� of nonlinearities for (8), (9) consists of all maps (6)
such that the following condition is satisfied:

For any 	 
 � and any two functions ���� � ����� 	 ���� and
���� � ����� 	 ��� with

��� � ��� ����� for a.a.  � 
�� 	 � � (10)

it follows that

������ ���� 
 � for a.a.  � 
�� 	 � � (11)

and there exists a continuous function � � �� � �� s. t.� �

�

������� ������� 
 �������������� 
 �������� (12)
for all � � � �  � 	�



2. Frequency-domain conditions for finite-time stability

Suppose that � � � � 	� � 	 
 � with � � 	 � 	� � and
� � � � � are arbitrary numbers.

Definition 2.1 The inequality (8), (9), Sect. 1, is called ��� �� �� 	�-
stable if for any solution ���� from ������� � � it follows that
������ � � for all  � 
�� � � 	��

Theorem 2.1 The inequality (8), (9), Sect. 1, is ��� �� �� 	�-stable
if there exist a continuous functional � on �� � 
�� � � 	� and
an integrable on � �� 
�� ��	� real-valued function � such that
the following conditions are satisfied:

��� � ����� �� � ������ �� �

� �

�

������ (1)

for all ��  � �� � � , and all functions ���� � 	��� ��� � �������
such that

� � ������ � � for all  � ��

����

� �

�

������ � ��
��	�������


� ��� �� ��
��	��������

� ��� ��

(2)

for all ��  � �� � � �

ODE-case: L. Weiss and E.F. Infante (1965), A.N. Michel and D.W.
Porter (1972)

The pair of operators ����� from (8), (9), Sect. 1, is stabilizable, if
there exists an operator  � ����� �� such that any solution ����
of the Cauchy-problem �� � ��� � ��� ���� � ��� decreases
exponentially as � ��� i.e.,

� ! 
 � � " 
 � � ������ � ! #�������� � �  
 � �



The complexification of a real Hilbert space �$� ��� ��� and a real
linear operator� are denoted by �$ �� ��� ���� and��, respectively.
For a real quadratic form � we denote their Hermitian extension
by � �. We introduce for the pair ����� from (8), (9), Sect. 1, the
frequency-domain characteristic

%��&� � ��&�� ������� � � (3)

Let us also introduce the real Hilbert space ' with scalar product
��� ��� and norm � � �� .

For this we define the linear operators ( � ����� ' � and ) �
���� ' � s.t. for any response ����� ����� of (8), (9), Sect. 1,

��� ��(��� �)��� � ' �  � 
�� 	�� � (4)

Lemma 2.1 Suppose that the pair ����� is stabilizable,� � � �� ����
and there exist numbers " 
 � and Æ � � such that

� ��%��&��� �� � ���%��&��� �� � Æ�
�
( �%��&� �) �

�
���� �

� "
�
�%��&����	�

�

� ����� �

�
� � � (5)

for all & � � with �& *� +���� and all � � � �� Then there exists a
real operator
, � , � � ����� ��� such that for any response ����� ����� ��
���� of (8), (9), Sect. 1, and for any ��  with � � � �  � 	� we
have

���� � ,����� � ����� � ,������ �� �

�


���,���� � ������ ������� �

Æ�(���� �)������� ��� �������� � (6)

A.L. Likhtarnikov and V.A. Yakubovich (1976)

V.A. Brusin (1976)

L. Pandolfi (1998)



Corollary 2.1 Suppose that there exist operators
, � , � � ����� ��� � ( � ����� ' � � ) � ���� ' � and a
number Æ � � such that the inequality (6) is satisfied. Assume that
� � � � � and 	 
 � with � � 	 � 	� are arbitrary numbers.
Then for any response ����� ����� of (8), (9), Sect. 1, with � �
������ � � for  � 
�� � � 	� and any ��  with � � � �  �
� � 	 the inequality

� ������ � ������ �

� �

�

������ (7)

is satisfied.

Here

� ��� �� ��� ,��� � � � ��� and (8)

��� �� ���
���,��� � ����� ������ �

Æ�(��� �)������ �
�

	
������� � (9)

where the supremum is taken over all pairs ����� ����� with
���� � ����� � � 	 ���� � ���� � ����� � � 	 ��� such that
� � ������ � � � ������ ��� 
 � and
������ ���� 
 ������� for a.a.  � 
�� � � 	��

Theorem 2.2 Suppose that the assumptions of Lemma 3.1 are
satisfied and, with the operators ,�(�) and the number Æ from
this lemma, the inequality (6) holds. If with the functions � and
� from (8), (9) and arbitrary ��  with � � � �  � � � 	 the
inequality� �

�

������ � ��
��	�������


� ���� ��
��	��������

� ��� (10)

is satisfied, then the variational inequality (8), (9), Sect. 1, is
��� �� �� 	�-stable.



3. Determining observation functionals via the
algebra of operator-symbols

Recall that $��-� is a subspace of ������ consisting of all such
(complex valued) functions the Fourier transform of which is com-
pactly supported in -.

Yu.A. Dubinskii (1982)

Consider the Cauchy problem for the variational equation

��
��
� ��.�����.� ��/� � � ��/��� � ���/� � (1)

��/� � � ��.���/� �� ��/� � � ��� ��/� ��� (2)

where ��.�� ��.� and ��.� are �DO’s with constant coeffi-
cients the symbols of which are real analytic in -. The action of
these linear operators is supposed as

��.� � 
$��-��� � 
$���-��� � (3)
��.� � 
$��-��� � 
$���-��� � (4)
��.� � 
$��-��� � 
$��-��� � (5)

where 0� 1 and 2 are natural numbers.

We assume the representation

��.� �

��
�����

��.
� � ��.� �

��
�����

��.
� �

��.� �

��
�����

��.
� (6)



where � � ���� � � � � ��� are multiindices, . � �.�� � � � �.��
with .� �

�
�
�
���

�� � �� � � � �3� are again the elementary differen-
tial operators and ��� �� and �� are constant 0� 0-, 0� 1- and
2� 0-matrices, respectively. The associated symbols

��4� �

��
�����

��4
� � ��4� �

��
�����

��4
� � ��4� �

��
�����

��4
�

(7)

are real analytic in - matrix-valued functions. The nonlinear part
of (1), (2) is given as set-valued map

� � �� � 
$��-��� � 	�
����	� � (8)

The initial function is assumed as �� � 
$��-���� The equation
(1), (2), (8) is understood in the sense of distributions.

The class of nonlinearities (8) is described by an Hermitian form �
on 
$��-��� � 
$��-��� given by

���� �� � �5��.��� �������	���5��.��� ������� �5
�.��� ��
(9)

where

5��.� � 5 ���.� � ��
$
��-��� � 
$���-���� �

5��.� � ��
$��-��� � 
$���-���� �

5
�.� � 5 �
�.� � ��
$
��-��� � 
$��-����

	
�

� (10)

are �DO’s with constant coefficients, the symbols

5��4� �

��
�����

5��4
� � � � ��	���

of which are real analytic in -.

M. Taylor (1981), F. Treves (1980)



The finite-time stability problem can be reduced to the problem of
solving the Lur’e operator equations

���.�,�.� � ,�.���.� � ��.����.� � �5��.� �

,�.���.�� ��.�6�.� � �5��.� �

6�.�6��.� � �5
�.� �

	
�

�

(11)

where ,�.� � , ��.� � � �
$���-��� � 
$�� �-�����
��.� � ��
$��-���� 
$���-����� and
6�.� � 6��.� � � �
$��-���� 
$��-����

are unknown�DO’s with constant coefficients the symbols of which
are real analytic in -.

In order to solve (11) we use, as it was done in, the isomorphism
between the algebra of �DO’s with constant coefficients and an-
alytic symbols and the algebra of analytic matrix-valued functions
which describe the symbols. This means that we have to solve the
matrix-valued Lur’e problem

���4�,�4� � ,�4���4� � ��4����4� � �5��4� �

,�4���4�� ��4�6�4� � �5��4� �

6�4�6��4� � �5
�4� �

	
�

�
(12)

where the given real analytic in - matrix-valued functions
��4�� ��4�� 5��4�� 5��4� and 5
�4� are of order 0� 0�0� 1�
0�0� 0�1 and 1�1� respectively, and the unknown real analytic
in - matrix-valued functions ,�4� � , ��4�� ��4� and
6�4� � 6��4� are of order 0� 0� 0� 1 and 1 � 1, respectively.

A.L. Likhtarnikov (1989)

Remark 3.1 Suppose that the �DO’s ������ 5�� 5� and 5
 in
(12) depend continuously on the time  � � . Then the calculation
of a time-dependent quadratic measurement functional � in the



sense of Theorem 1.1, which is represented by a pseudo differen-
tial operator ,��.� in $��-� can be reduced to the problem of
solving differential Lur’e-Riccati equations for absolute continuous
in  and real analytic in 4 symbols ,�� 4�� ��� 4� and K �� 4� in
� �-:

�, �� 4� ����� 4�, �� 4� � ,�� 4�� �� 4� � ��� 4����� 4�

� �5��� 4� �

,�� 4���� 4�� ��� 4�6�� 4� � �5��� 4� �

6�� 4�6��� 4� � �5
�� 4� �

	



�




�

(13)

Sufficient frequency-domain conditions for the solvability of (13)
are given in V.A. Yakubovich, 1986 (periodic in  case) and in A.V.
Savkin, 1993 (general bounded in  case).

Example 3.1 Consider the heat equation on an infinite bar

��
��
� 7 ���

���
� ��/� � � (14)

��/� � � � ���/� �� � ��/��� � ���/� � (15)

where 7 
 � is a parameter and � � � � � is a given nonlinear
function which satisfies the inequality

�� ���� � 8��� � �� � ����� � (16)

Here � � � denotes the norm in ����� and � � 8 � 	 is also a
parameter. It follows that � is characterized by the quadratic form
in ����� � ����� given as

���� �� �� 8����� � ���� � (17)

��4� � �7 4�� ��4� � � � (18)

5��4� � 8� � 5��4� � � � 5
�4� � �� � (19)



%��&� 4� � ��&� 7 4���� � (20)

-
�

� ��

�4� &� � �

� � ��� 7 4��� � &� � �
�
� (21)

��%��&� 4��� �� 4� �� �����&� 4�� �

���&� 4� � 8��%��&� 4��� � � � (22)

-
�

��

�&� 4� � �

� � 4 
 �� 8� � &� � 7�4� � 	 7 4�
�
�

- �� ���� -
�

�

4 
 � � 8� � 7�4� � 	 7 4�

�
�
�
4 � � �

�
8*7 � 4 �

�
	*7

�
�

The pair ���4�� ��4�� from (18) is stabilizable in -.

Lur’e equations in -:

�	,�4� 7 4� � ���4� � �8� � (23)
,�4�� ��4�6�4� � � � (24)

6��4� � � � (25)

�� 6�4� � �, ,�4� � ��4��

Equation for ,��� in -:

, ��4�� 	 7 4�,�4� � 8� � � � (26)

,�4� � 7 4� �

�
7�4� � 8� �


